File size: 6,528 Bytes
b929c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96e233
db27d1d
374896d
 
 
 
 
b96e233
374896d
b929c63
 
374896d
b929c63
 
 
 
 
374896d
 
 
b929c63
 
 
 
 
 
 
 
 
6d9b134
4591b17
b929c63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3948c4b
 
 
 
 
 
b929c63
 
db27d1d
b929c63
 
 
 
 
 
 
 
db27d1d
b929c63
 
db27d1d
b929c63
 
 
ba47eaa
 
 
c8b3893
 
ba47eaa
2606229
b929c63
 
db27d1d
c8b3893
 
db27d1d
b929c63
 
 
db27d1d
b929c63
 
c8b3893
 
 
 
db27d1d
b929c63
 
 
 
 
 
ba47eaa
2606229
db27d1d
b929c63
 
 
88ee7ec
b929c63
78e3da5
 
b929c63
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
import copy
import re
import secrets
from pathlib import Path
from pydub import AudioSegment

# Initialize the model and tokenizer
torch.manual_seed(420)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval()

def _parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split("`")
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f"<br></code></pre>"
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", r"\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>" + line
    text = "".join(lines)
    return text
    
def predict(_chatbot, task_history, user_input):
    print("Predict - Start: task_history =", task_history)
    if not isinstance(task_history, list) or not all(isinstance(item, tuple) and len(item) == 2 for item in task_history):
        print("Error: task_history should be a list of tuples of length 2.")
        return _chatbot

    query = user_input if user_input else (task_history[-1][0] if task_history else "")
    print("User: " + _parse_text(query))

    if not task_history:
        return _chatbot

    history_cp = copy.deepcopy(task_history)
    history_filter = []
    audio_idx = 1
    pre = ""
    last_audio = None

    for item in history_cp:
        q, a = item
        if isinstance(q, (tuple, list)):
            last_audio = q[0]
            q = f'Audio {audio_idx}: <audio>{q[0]}</audio>'
            pre += q + '\n'
            audio_idx += 1
        else:
            pre += q
            history_filter.append((pre, a))
            pre = ""
    if not history_filter:
        return _chatbot 
    history, message = history_filter[:-1], history_filter[-1][0]
    response, history = model.chat(tokenizer, message, history=history)
    ts_pattern = r"<\|\d{1,2}\.\d+\|>"
    all_time_stamps = re.findall(ts_pattern, response)
    if (len(all_time_stamps) > 0) and (len(all_time_stamps) % 2 ==0) and last_audio:
        ts_float = [ float(t.replace("<|","").replace("|>","")) for t in all_time_stamps]
        ts_float_pair = [ts_float[i:i + 2] for i in range(0,len(all_time_stamps),2)]
        # θ―»ε–ιŸ³ι’‘ζ–‡δ»Ά
        format = os.path.splitext(last_audio)[-1].replace(".","")
        audio_file = AudioSegment.from_file(last_audio, format=format)
        chat_response_t = response.replace("<|", "").replace("|>", "")
        chat_response = chat_response_t
        temp_dir = secrets.token_hex(20)
        temp_dir = Path(uploaded_file_dir) / temp_dir
        temp_dir.mkdir(exist_ok=True, parents=True)
            # ζˆͺε–ιŸ³ι’‘ζ–‡δ»Ά
        for pair in ts_float_pair:
            audio_clip = audio_file[pair[0] * 1000: pair[1] * 1000]
                # δΏε­˜ιŸ³ι’‘ζ–‡δ»Ά
            name = f"tmp{secrets.token_hex(5)}.{format}"
            filename = temp_dir / name
            audio_clip.export(filename, format=format)
            _chatbot[-1] = (_parse_text(query), chat_response)
            _chatbot.append((None, (str(filename),)))
    if not _chatbot:
        _chatbot = [("", "")] 

    print("Predict - End: task_history =", task_history)
    return _chatbot[-1][1], _chatbot


def regenerate(_chatbot, task_history):
    print("Regenerate - Start: task_history =", task_history) 
    if not task_history:
        return _chatbot
    item = task_history[-1]
    if item[1] is None:
        return _chatbot
    task_history[-1] = (item[0], None)
    chatbot_item = _chatbot.pop(-1)
    if chatbot_item[0] is None:
        _chatbot[-1] = (_chatbot[-1][0], None)
    else:
        _chatbot.append((chatbot_item[0], None))
    print("Regenerate - End: task_history =", task_history)
    return predict(_chatbot, task_history)

def add_text(history, task_history, text):
    print("Add Text - Before: task_history =", task_history) 
    if not isinstance(task_history, list):
        task_history = []
    history.append((_parse_text(text), None))
    task_history.append((text, None))
    print("Add Text - After: task_history =", task_history)  
    return history, task_history

def add_file(history, task_history, file):
    print("Add File - Before: task_history =", task_history)
    history.append(((file.name,), None))
    task_history.append(((file.name,), None))
    print("Add File - After: task_history =", task_history)
    return history, task_history

def add_mic(history, task_history, file):
    print("Add Mic - Before: task_history =", task_history)
    if file is None:
        return history, task_history
    file_with_extension = file + '.wav'
    os.rename(file, file_with_extension)
    history.append(((file_with_extension,), None))
    task_history.append(((file_with_extension,), None))
    print("Add Mic - After: task_history =", task_history)
    return history, task_history

def reset_user_input():
    return gr.update(value="")

def reset_state(task_history):
    print("Reset State - Before: task_history =", task_history)  
    task_history = []  
    print("Reset State - After: task_history =", task_history)
    return []
        
iface = gr.Interface(
    fn=predict,
    inputs=[
        gr.Audio(label="Audio Input"),
        gr.Textbox(label="Text Query"),
        gr.State()  
    ],
    outputs=[
        "text",  
        gr.State()  
    ],
    title="Audio-Text Interaction Model",
    description="This model can process an audio input along with a text query and provide a response.",
    theme="default",
    allow_flagging="never"
)

iface.launch()