Spaces:
Paused
Paused
File size: 7,780 Bytes
b929c63 44de538 b929c63 b96e233 10184af 0708ec8 b650bb7 44de538 db27d1d 374896d b96e233 374896d b929c63 374896d b929c63 374896d b929c63 6d9b134 4591b17 b929c63 3948c4b 44de538 b929c63 0708ec8 db27d1d b929c63 db27d1d b929c63 db27d1d b929c63 0708ec8 ba47eaa c8b3893 ba47eaa 2606229 b929c63 0708ec8 db27d1d c8b3893 db27d1d b929c63 0708ec8 db27d1d b929c63 c8b3893 db27d1d b929c63 0708ec8 ba47eaa 2606229 db27d1d b929c63 88ee7ec b929c63 78e3da5 0708ec8 b929c63 0708ec8 b929c63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
import copy
import re
import secrets
from pathlib import Path
from pydub import AudioSegment
import ast
torch.manual_seed(420)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval()
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def predict(_chatbot, task_history, user_input):
print("Predict - Start: task_history =", task_history)
print("Type of user_input:", type(user_input))
print("Type of task_history:", type(task_history))
if task_history is None or not isinstance(task_history, list):
task_history = []
else :
task_history = parse_task_history(task_history)
print("Predict - Start: task_history =", task_history)
if not isinstance(task_history, list) or not all(isinstance(item, tuple) and len(item) == 2 for item in task_history):
print("Error: task_history should be a list of tuples of length 2.")
return _chatbot
query = user_input if user_input else (task_history[-1][0] if task_history else "")
print("User: " + _parse_text(query))
if not task_history:
return _chatbot
history_cp = copy.deepcopy(task_history)
history_filter = []
audio_idx = 1
pre = ""
last_audio = None
for item in history_cp:
q, a = item
if isinstance(q, (tuple, list)):
last_audio = q[0]
q = f'Audio {audio_idx}: <audio>{q[0]}</audio>'
pre += q + '\n'
audio_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
if not history_filter:
return _chatbot
history, message = history_filter[:-1], history_filter[-1][0]
response, history = model.chat(tokenizer, message, history=history)
ts_pattern = r"<\|\d{1,2}\.\d+\|>"
all_time_stamps = re.findall(ts_pattern, response)
if (len(all_time_stamps) > 0) and (len(all_time_stamps) % 2 ==0) and last_audio:
ts_float = [ float(t.replace("<|","").replace("|>","")) for t in all_time_stamps]
ts_float_pair = [ts_float[i:i + 2] for i in range(0,len(all_time_stamps),2)]
# θ―»ει³ι’ζδ»Ά
format = os.path.splitext(last_audio)[-1].replace(".","")
audio_file = AudioSegment.from_file(last_audio, format=format)
chat_response_t = response.replace("<|", "").replace("|>", "")
chat_response = chat_response_t
temp_dir = secrets.token_hex(20)
temp_dir = Path(uploaded_file_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
# ζͺει³ι’ζδ»Ά
for pair in ts_float_pair:
audio_clip = audio_file[pair[0] * 1000: pair[1] * 1000]
# δΏει³ι’ζδ»Ά
name = f"tmp{secrets.token_hex(5)}.{format}"
filename = temp_dir / name
audio_clip.export(filename, format=format)
_chatbot[-1] = (_parse_text(query), chat_response)
_chatbot.append((None, (str(filename),)))
if not _chatbot:
_chatbot = [("", "")]
print("Predict - End: task_history =", task_history)
return _chatbot[-1][1], _chatbot
def parse_task_history(task_history_str):
try:
parsed_task_history = ast.literal_eval(task_history_str)
if isinstance(parsed_task_history, list) and all(isinstance(item, tuple) and len(item) == 2 for item in parsed_task_history):
return parsed_task_history
else:
raise ValueError("Parsed task history is not a list of tuples")
except Exception as e:
print(f"Error parsing task history: {e}")
return []
def regenerate(_chatbot, task_history):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Regenerate - Start: task_history =", task_history)
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
print("Regenerate - End: task_history =", task_history)
return predict(_chatbot, task_history)
def add_text(history, task_history, text):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Add Text - Before: task_history =", task_history)
if not isinstance(task_history, list):
task_history = []
history.append((_parse_text(text), None))
task_history.append((text, None))
print("Add Text - After: task_history =", task_history)
return history, task_history
def add_file(history, task_history, file):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Add File - Before: task_history =", task_history)
history.append(((file.name,), None))
task_history.append(((file.name,), None))
print("Add File - After: task_history =", task_history)
return history, task_history
def add_mic(history, task_history, file):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Add Mic - Before: task_history =", task_history)
if file is None:
return history, task_history
file_with_extension = file + '.wav'
os.rename(file, file_with_extension)
history.append(((file_with_extension,), None))
task_history.append(((file_with_extension,), None))
print("Add Mic - After: task_history =", task_history)
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Reset State - Before: task_history =", task_history)
task_history = []
print("Reset State - After: task_history =", task_history)
return []
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(label="Audio Input"),
gr.Textbox(label="Text Query"),
gr.State()
],
outputs=[
"text",
gr.State()
],
title="Audio-Text Interaction Model",
description="This model can process an audio input along with a text query and provide a response.",
theme="default",
allow_flagging="never"
)
iface.launch() |