Spaces:
Paused
Paused
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
import os | |
import copy | |
import re | |
import secrets | |
from pathlib import Path | |
from pydub import AudioSegment | |
import ast | |
torch.manual_seed(420) | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval() | |
def _parse_text(text): | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split("`") | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f"<br></code></pre>" | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", r"\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>" + line | |
text = "".join(lines) | |
return text | |
def predict(_chatbot, task_history, user_input): | |
print("Predict - Start: task_history =", task_history) | |
print("Type of user_input:", type(user_input)) | |
print("Type of task_history:", type(task_history)) | |
if task_history is None or not isinstance(task_history, list): | |
task_history = [] | |
else | |
task_history = parse_task_history(task_history) | |
print("Predict - Start: task_history =", task_history) | |
if not isinstance(task_history, list) or not all(isinstance(item, tuple) and len(item) == 2 for item in task_history): | |
print("Error: task_history should be a list of tuples of length 2.") | |
return _chatbot | |
query = user_input if user_input else (task_history[-1][0] if task_history else "") | |
print("User: " + _parse_text(query)) | |
if not task_history: | |
return _chatbot | |
history_cp = copy.deepcopy(task_history) | |
history_filter = [] | |
audio_idx = 1 | |
pre = "" | |
last_audio = None | |
for item in history_cp: | |
q, a = item | |
if isinstance(q, (tuple, list)): | |
last_audio = q[0] | |
q = f'Audio {audio_idx}: <audio>{q[0]}</audio>' | |
pre += q + '\n' | |
audio_idx += 1 | |
else: | |
pre += q | |
history_filter.append((pre, a)) | |
pre = "" | |
if not history_filter: | |
return _chatbot | |
history, message = history_filter[:-1], history_filter[-1][0] | |
response, history = model.chat(tokenizer, message, history=history) | |
ts_pattern = r"<\|\d{1,2}\.\d+\|>" | |
all_time_stamps = re.findall(ts_pattern, response) | |
if (len(all_time_stamps) > 0) and (len(all_time_stamps) % 2 ==0) and last_audio: | |
ts_float = [ float(t.replace("<|","").replace("|>","")) for t in all_time_stamps] | |
ts_float_pair = [ts_float[i:i + 2] for i in range(0,len(all_time_stamps),2)] | |
# θ―»ει³ι’ζδ»Ά | |
format = os.path.splitext(last_audio)[-1].replace(".","") | |
audio_file = AudioSegment.from_file(last_audio, format=format) | |
chat_response_t = response.replace("<|", "").replace("|>", "") | |
chat_response = chat_response_t | |
temp_dir = secrets.token_hex(20) | |
temp_dir = Path(uploaded_file_dir) / temp_dir | |
temp_dir.mkdir(exist_ok=True, parents=True) | |
# ζͺει³ι’ζδ»Ά | |
for pair in ts_float_pair: | |
audio_clip = audio_file[pair[0] * 1000: pair[1] * 1000] | |
# δΏει³ι’ζδ»Ά | |
name = f"tmp{secrets.token_hex(5)}.{format}" | |
filename = temp_dir / name | |
audio_clip.export(filename, format=format) | |
_chatbot[-1] = (_parse_text(query), chat_response) | |
_chatbot.append((None, (str(filename),))) | |
if not _chatbot: | |
_chatbot = [("", "")] | |
print("Predict - End: task_history =", task_history) | |
return _chatbot[-1][1], _chatbot | |
def parse_task_history(task_history_str): | |
try: | |
parsed_task_history = ast.literal_eval(task_history_str) | |
if isinstance(parsed_task_history, list) and all(isinstance(item, tuple) and len(item) == 2 for item in parsed_task_history): | |
return parsed_task_history | |
else: | |
raise ValueError("Parsed task history is not a list of tuples") | |
except Exception as e: | |
print(f"Error parsing task history: {e}") | |
return [] | |
def regenerate(_chatbot, task_history): | |
if task_history is None or not isinstance(task_history, list): | |
task_history = [] | |
print("Regenerate - Start: task_history =", task_history) | |
if not task_history: | |
return _chatbot | |
item = task_history[-1] | |
if item[1] is None: | |
return _chatbot | |
task_history[-1] = (item[0], None) | |
chatbot_item = _chatbot.pop(-1) | |
if chatbot_item[0] is None: | |
_chatbot[-1] = (_chatbot[-1][0], None) | |
else: | |
_chatbot.append((chatbot_item[0], None)) | |
print("Regenerate - End: task_history =", task_history) | |
return predict(_chatbot, task_history) | |
def add_text(history, task_history, text): | |
if task_history is None or not isinstance(task_history, list): | |
task_history = [] | |
print("Add Text - Before: task_history =", task_history) | |
if not isinstance(task_history, list): | |
task_history = [] | |
history.append((_parse_text(text), None)) | |
task_history.append((text, None)) | |
print("Add Text - After: task_history =", task_history) | |
return history, task_history | |
def add_file(history, task_history, file): | |
if task_history is None or not isinstance(task_history, list): | |
task_history = [] | |
print("Add File - Before: task_history =", task_history) | |
history.append(((file.name,), None)) | |
task_history.append(((file.name,), None)) | |
print("Add File - After: task_history =", task_history) | |
return history, task_history | |
def add_mic(history, task_history, file): | |
if task_history is None or not isinstance(task_history, list): | |
task_history = [] | |
print("Add Mic - Before: task_history =", task_history) | |
if file is None: | |
return history, task_history | |
file_with_extension = file + '.wav' | |
os.rename(file, file_with_extension) | |
history.append(((file_with_extension,), None)) | |
task_history.append(((file_with_extension,), None)) | |
print("Add Mic - After: task_history =", task_history) | |
return history, task_history | |
def reset_user_input(): | |
return gr.update(value="") | |
def reset_state(task_history): | |
if task_history is None or not isinstance(task_history, list): | |
task_history = [] | |
print("Reset State - Before: task_history =", task_history) | |
task_history = [] | |
print("Reset State - After: task_history =", task_history) | |
return [] | |
iface = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Audio(label="Audio Input"), | |
gr.Textbox(label="Text Query"), | |
gr.State() | |
], | |
outputs=[ | |
"text", | |
gr.State() | |
], | |
title="Audio-Text Interaction Model", | |
description="This model can process an audio input along with a text query and provide a response.", | |
theme="default", | |
allow_flagging="never" | |
) | |
iface.launch() |