Qwen-Audio-Chat / app.py
Tonic's picture
Update app.py
44de538
raw
history blame
7.78 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
import copy
import re
import secrets
from pathlib import Path
from pydub import AudioSegment
import ast
torch.manual_seed(420)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval()
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f"<br></code></pre>"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def predict(_chatbot, task_history, user_input):
print("Predict - Start: task_history =", task_history)
print("Type of user_input:", type(user_input))
print("Type of task_history:", type(task_history))
if task_history is None or not isinstance(task_history, list):
task_history = []
else
task_history = parse_task_history(task_history)
print("Predict - Start: task_history =", task_history)
if not isinstance(task_history, list) or not all(isinstance(item, tuple) and len(item) == 2 for item in task_history):
print("Error: task_history should be a list of tuples of length 2.")
return _chatbot
query = user_input if user_input else (task_history[-1][0] if task_history else "")
print("User: " + _parse_text(query))
if not task_history:
return _chatbot
history_cp = copy.deepcopy(task_history)
history_filter = []
audio_idx = 1
pre = ""
last_audio = None
for item in history_cp:
q, a = item
if isinstance(q, (tuple, list)):
last_audio = q[0]
q = f'Audio {audio_idx}: <audio>{q[0]}</audio>'
pre += q + '\n'
audio_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
if not history_filter:
return _chatbot
history, message = history_filter[:-1], history_filter[-1][0]
response, history = model.chat(tokenizer, message, history=history)
ts_pattern = r"<\|\d{1,2}\.\d+\|>"
all_time_stamps = re.findall(ts_pattern, response)
if (len(all_time_stamps) > 0) and (len(all_time_stamps) % 2 ==0) and last_audio:
ts_float = [ float(t.replace("<|","").replace("|>","")) for t in all_time_stamps]
ts_float_pair = [ts_float[i:i + 2] for i in range(0,len(all_time_stamps),2)]
# θ―»ε–ιŸ³ι’‘ζ–‡δ»Ά
format = os.path.splitext(last_audio)[-1].replace(".","")
audio_file = AudioSegment.from_file(last_audio, format=format)
chat_response_t = response.replace("<|", "").replace("|>", "")
chat_response = chat_response_t
temp_dir = secrets.token_hex(20)
temp_dir = Path(uploaded_file_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
# ζˆͺε–ιŸ³ι’‘ζ–‡δ»Ά
for pair in ts_float_pair:
audio_clip = audio_file[pair[0] * 1000: pair[1] * 1000]
# δΏε­˜ιŸ³ι’‘ζ–‡δ»Ά
name = f"tmp{secrets.token_hex(5)}.{format}"
filename = temp_dir / name
audio_clip.export(filename, format=format)
_chatbot[-1] = (_parse_text(query), chat_response)
_chatbot.append((None, (str(filename),)))
if not _chatbot:
_chatbot = [("", "")]
print("Predict - End: task_history =", task_history)
return _chatbot[-1][1], _chatbot
def parse_task_history(task_history_str):
try:
parsed_task_history = ast.literal_eval(task_history_str)
if isinstance(parsed_task_history, list) and all(isinstance(item, tuple) and len(item) == 2 for item in parsed_task_history):
return parsed_task_history
else:
raise ValueError("Parsed task history is not a list of tuples")
except Exception as e:
print(f"Error parsing task history: {e}")
return []
def regenerate(_chatbot, task_history):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Regenerate - Start: task_history =", task_history)
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
print("Regenerate - End: task_history =", task_history)
return predict(_chatbot, task_history)
def add_text(history, task_history, text):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Add Text - Before: task_history =", task_history)
if not isinstance(task_history, list):
task_history = []
history.append((_parse_text(text), None))
task_history.append((text, None))
print("Add Text - After: task_history =", task_history)
return history, task_history
def add_file(history, task_history, file):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Add File - Before: task_history =", task_history)
history.append(((file.name,), None))
task_history.append(((file.name,), None))
print("Add File - After: task_history =", task_history)
return history, task_history
def add_mic(history, task_history, file):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Add Mic - Before: task_history =", task_history)
if file is None:
return history, task_history
file_with_extension = file + '.wav'
os.rename(file, file_with_extension)
history.append(((file_with_extension,), None))
task_history.append(((file_with_extension,), None))
print("Add Mic - After: task_history =", task_history)
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Reset State - Before: task_history =", task_history)
task_history = []
print("Reset State - After: task_history =", task_history)
return []
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(label="Audio Input"),
gr.Textbox(label="Text Query"),
gr.State()
],
outputs=[
"text",
gr.State()
],
title="Audio-Text Interaction Model",
description="This model can process an audio input along with a text query and provide a response.",
theme="default",
allow_flagging="never"
)
iface.launch()