import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import os
import copy
import re
import secrets
from pathlib import Path
from pydub import AudioSegment
torch.manual_seed(420)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-Audio-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-Audio-Chat", device_map="cuda", trust_remote_code=True).eval()
def _parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split("`")
if count % 2 == 1:
lines[i] = f'
'
else:
lines[i] = f"
"
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", r"\`")
line = line.replace("<", "<")
line = line.replace(">", ">")
line = line.replace(" ", " ")
line = line.replace("*", "*")
line = line.replace("_", "_")
line = line.replace("-", "-")
line = line.replace(".", ".")
line = line.replace("!", "!")
line = line.replace("(", "(")
line = line.replace(")", ")")
line = line.replace("$", "$")
lines[i] = " " + line
text = "".join(lines)
return text
def predict(_chatbot, task_history, user_input):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Predict - Start: task_history =", task_history)
if not isinstance(task_history, list) or not all(isinstance(item, tuple) and len(item) == 2 for item in task_history):
print("Error: task_history should be a list of tuples of length 2.")
return _chatbot
query = user_input if user_input else (task_history[-1][0] if task_history else "")
print("User: " + _parse_text(query))
if not task_history:
return _chatbot
history_cp = copy.deepcopy(task_history)
history_filter = []
audio_idx = 1
pre = ""
last_audio = None
for item in history_cp:
q, a = item
if isinstance(q, (tuple, list)):
last_audio = q[0]
q = f'Audio {audio_idx}: '
pre += q + '\n'
audio_idx += 1
else:
pre += q
history_filter.append((pre, a))
pre = ""
if not history_filter:
return _chatbot
history, message = history_filter[:-1], history_filter[-1][0]
response, history = model.chat(tokenizer, message, history=history)
ts_pattern = r"<\|\d{1,2}\.\d+\|>"
all_time_stamps = re.findall(ts_pattern, response)
if (len(all_time_stamps) > 0) and (len(all_time_stamps) % 2 ==0) and last_audio:
ts_float = [ float(t.replace("<|","").replace("|>","")) for t in all_time_stamps]
ts_float_pair = [ts_float[i:i + 2] for i in range(0,len(all_time_stamps),2)]
# 读取音频文件
format = os.path.splitext(last_audio)[-1].replace(".","")
audio_file = AudioSegment.from_file(last_audio, format=format)
chat_response_t = response.replace("<|", "").replace("|>", "")
chat_response = chat_response_t
temp_dir = secrets.token_hex(20)
temp_dir = Path(uploaded_file_dir) / temp_dir
temp_dir.mkdir(exist_ok=True, parents=True)
# 截取音频文件
for pair in ts_float_pair:
audio_clip = audio_file[pair[0] * 1000: pair[1] * 1000]
# 保存音频文件
name = f"tmp{secrets.token_hex(5)}.{format}"
filename = temp_dir / name
audio_clip.export(filename, format=format)
_chatbot[-1] = (_parse_text(query), chat_response)
_chatbot.append((None, (str(filename),)))
if not _chatbot:
_chatbot = [("", "")]
print("Predict - End: task_history =", task_history)
return _chatbot[-1][1], _chatbot
def regenerate(_chatbot, task_history):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Regenerate - Start: task_history =", task_history)
if not task_history:
return _chatbot
item = task_history[-1]
if item[1] is None:
return _chatbot
task_history[-1] = (item[0], None)
chatbot_item = _chatbot.pop(-1)
if chatbot_item[0] is None:
_chatbot[-1] = (_chatbot[-1][0], None)
else:
_chatbot.append((chatbot_item[0], None))
print("Regenerate - End: task_history =", task_history)
return predict(_chatbot, task_history)
def add_text(history, task_history, text):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Add Text - Before: task_history =", task_history)
if not isinstance(task_history, list):
task_history = []
history.append((_parse_text(text), None))
task_history.append((text, None))
print("Add Text - After: task_history =", task_history)
return history, task_history
def add_file(history, task_history, file):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Add File - Before: task_history =", task_history)
history.append(((file.name,), None))
task_history.append(((file.name,), None))
print("Add File - After: task_history =", task_history)
return history, task_history
def add_mic(history, task_history, file):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Add Mic - Before: task_history =", task_history)
if file is None:
return history, task_history
file_with_extension = file + '.wav'
os.rename(file, file_with_extension)
history.append(((file_with_extension,), None))
task_history.append(((file_with_extension,), None))
print("Add Mic - After: task_history =", task_history)
return history, task_history
def reset_user_input():
return gr.update(value="")
def reset_state(task_history):
if task_history is None or not isinstance(task_history, list):
task_history = []
print("Reset State - Before: task_history =", task_history)
task_history = []
print("Reset State - After: task_history =", task_history)
return []
iface = gr.Interface(
fn=predict,
inputs=[
gr.Audio(label="Audio Input"),
gr.Textbox(label="Text Query"),
gr.State()
],
outputs=[
"text",
gr.State()
],
title="Audio-Text Interaction Model",
description="This model can process an audio input along with a text query and provide a response.",
theme="default",
allow_flagging="never"
)
iface.launch()