|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
import os |
|
import gradio as gr |
|
import sentencepiece |
|
from tokenization_yi import YiTokenizer |
|
|
|
|
|
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:120' |
|
model_id = "larryvrh/Yi-6B-200K-Llamafied" |
|
tokenizer_path = "./" |
|
eos_token_id = 7 |
|
|
|
DESCRIPTION = """ |
|
# 👋🏻Welcome to 🙋🏻♂️Tonic's🧑🏻🚀YI-200K🚀 |
|
You can use this Space to test out the current model [larryvrh/Yi-6B-200K-Llamafied](https://huggingface.co/larryvrh/Yi-6B-200K-Llamafied) a "Llamified" version of [01-ai/Yi-6B-200k](https://huggingface.co/01-ai/Yi-6B-200k) based on [01-ai/Yi-34B](https://huggingface.co/01-ai/Yi-34B) |
|
You can also use 🧑🏻🚀YI-200K🚀 by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic1/YiTonic?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3> |
|
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/nXx5wbX9) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha) |
|
""" |
|
|
|
tokenizer = AutoModelForCausalLM.from_pretrained(model_id) |
|
tokenizer = YiTokenizer.from_pretrained(tokenizer_path) |
|
model = AutoModelForCausalLM.from_pretrained(model_id=model_id, device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True) |
|
|
|
def format_prompt(user_message, system_message="I am YiTonic, an AI language model created by Tonic-AI. I am a cautious assistant. I carefully follow instructions. I am helpful and harmless and I follow ethical guidelines and promote positive behavior."): |
|
prompt = f"<|im_start|>assistant\n{self.system_message}<|im_end|>\n<|im_start|>\nuser\n{user_message}<|im_end|>\nassistant\n" |
|
return prompt |
|
|
|
def predict(message, system_message, max_new_tokens=4056, temperature=3.5, top_p=0.9, top_k=800, do_sample=False): |
|
formatted_prompt = format_prompt(message, system_message) |
|
|
|
input_ids = tokenizer.encode(formatted_prompt, return_tensors='pt') |
|
input_ids = input_ids.to(model.device) |
|
|
|
response_ids = model.generate( |
|
input_ids, |
|
max_length=max_new_tokens + input_ids.shape[1], |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
no_repeat_ngram_size=5, |
|
pad_token_id=tokenizer.eos_token_id, |
|
do_sample=do_sample |
|
) |
|
|
|
response = tokenizer.decode(response_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) |
|
return [("bot", response)] |
|
|
|
with gr.Blocks(theme='ParityError/Anime') as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Group(): |
|
textbox = gr.Textbox(placeholder='Your Message Here', label='Your Message', lines=2) |
|
system_prompt = gr.Textbox(placeholder='Provide a System Prompt In The First Person', label='System Prompt', lines=2, value="You are YiTonic, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior.") |
|
|
|
with gr.Group(): |
|
submit_button = gr.Button('Submit', variant='primary') |
|
|
|
with gr.Accordion(label='Advanced options', open=False): |
|
max_new_tokens = gr.Slider(label='Max New Tokens', minimum=1, maximum=55000, step=1, value=4056) |
|
temperature = gr.Slider(label='Temperature', minimum=0.1, maximum=4.0, step=0.1, value=1.2) |
|
top_p = gr.Slider(label='Top-P (nucleus sampling)', minimum=0.05, maximum=1.0, step=0.05, value=0.9) |
|
top_k = gr.Slider(label='Top-K', minimum=1, maximum=1000, step=1, value=900) |
|
do_sample_checkbox = gr.Checkbox(label='Disable for faster inference', value=False) |
|
|
|
submit_button.click( |
|
fn=predict, |
|
inputs=[textbox, system_prompt, max_new_tokens, temperature, top_p, top_k, do_sample_checkbox], |
|
outputs=chatbot |
|
) |
|
|
|
with gr.Group(): |
|
chatbot = gr.Chatbot(label='TonicYi-6B-200K-🦙') |
|
|
|
demo.launch() |