Spaces:
Runtime error
Runtime error
File size: 18,789 Bytes
722ecec fd10b6c 39dff4c 28b69ba 4dc9e5f 3eb706b f877950 ad65b09 f877950 eae970b 16c1c4f 5b1e208 16c1c4f ad65b09 53714db db06812 53714db db06812 53714db db06812 53714db db06812 53714db 0f4cece 7dc22ca 6f4a565 a31fde9 fa57d02 91f8c28 f877950 967b8e7 f877950 7dc22ca f877950 7311b6e f877950 a31fde9 f877950 a31fde9 abe552f a31fde9 7311b6e 9bda859 f86940b f877950 215f2d8 f877950 215f2d8 7311b6e f877950 7311b6e 215f2d8 7311b6e 215f2d8 7311b6e 215f2d8 874e011 215f2d8 874e011 7bd7744 7311b6e f877950 4dc9e5f f877950 be77a46 7311b6e be77a46 7311b6e be77a46 7311b6e dccea39 7311b6e b43370d dccea39 aa09b5b 7311b6e db06812 dccea39 7311b6e dccea39 7311b6e dccea39 aa09b5b be77a46 176abe0 7311b6e f877950 db06812 86a924b db06812 176abe0 770ea37 db06812 86a924b 7311b6e db06812 7311b6e db06812 603805b db06812 7311b6e db06812 a543a78 7311b6e db06812 5a0e49a 7311b6e 5a0e49a ff4e34f f877950 4854a72 176b9ce f877950 176b9ce 4854a72 176b9ce d354d71 d1b23d4 176b9ce d50b1d6 176b9ce 4854a72 f877950 176b9ce d354d71 32cbfb2 176b9ce 4854a72 bb31795 176b9ce 4854a72 176b9ce 4854a72 176b9ce 4854a72 f2e5be8 722ecec eae970b 7311b6e eae970b f877950 e42cb34 ab8e798 eae970b ab8e798 eae970b ab8e798 7311b6e ab8e798 f877950 23e856e ab8e798 7311b6e ab8e798 7311b6e e3af7cd eae970b 41cbd00 7311b6e 8de78b2 8586313 7311b6e 2f101a3 7311b6e 6de3447 7311b6e 751b072 7311b6e fddbec9 f38c30e 751b072 7311b6e 3853615 4dc9e5f 7311b6e 9bda859 2f101a3 252dd70 7311b6e 8b11b91 415223e d456b20 57f52ca 25b2322 6de3447 25b2322 6de3447 0b6ead0 7311b6e 0b6ead0 5c14e87 437879c 5c14e87 db06812 8eb3297 7311b6e ea5be1b 7311b6e 2256c70 5c14e87 db06812 5c14e87 93ae82c f308688 5c14e87 a2ac4ba 7311b6e c03a440 7311b6e 2256c70 5c14e87 f877950 0b077bd 86a924b eb0e999 967b8e7 c797359 950e427 d2609b3 583b605 53ded4b 583b605 d2609b3 967b8e7 c797359 81be9c7 a783c53 967b8e7 c797359 732e3f7 a783c53 967b8e7 c797359 d2609b3 86a924b a783c53 86a924b 967b8e7 00136b0 dac51d0 86a924b 80d8737 86a924b 80d8737 a783c53 9db4018 f877950 967b8e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
from gradio_client import Client
import numpy as np
import gradio as gr
import requests
import json
import dotenv
import soundfile as sf
import time
import textwrap
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
import uuid
import optimum
welcome_message = """
# 👋🏻Welcome to ⚕🗣️😷TruEra - MultiMed ⚕🗣️😷
🗣️📝 This is an accessible and multimodal tool optimized using TruEra! We evaluated several configurations, prompts, and models to optimize this application.
### How To Use ⚕🗣️😷TruEra - MultiMed⚕:
🗣️📝Interact with ⚕🗣️😷TruEra - MultiMed⚕ in any language using image, audio or text. ⚕🗣️😷TruEra - MultiMed is an accessible application 📚🌟💼 that uses [Qwen/Qwen-1_8B-Chat](https://huggingface.co/Qwen/Qwen-1_8B-Chat) and [Tonic1/Official-Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval w/ [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/hf-seamless-m4t-large) for audio translation & accessibility.
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷TruEra MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
### Join us :
🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"
"""
languages = {
"English": "eng",
"Modern Standard Arabic": "arb",
"Bengali": "ben",
"Catalan": "cat",
"Czech": "ces",
"Mandarin Chinese": "cmn",
"Welsh": "cym",
"Danish": "dan",
"German": "deu",
"Estonian": "est",
"Finnish": "fin",
"French": "fra",
"Hindi": "hin",
"Indonesian": "ind",
"Italian": "ita",
"Japanese": "jpn",
"Korean": "kor",
"Maltese": "mlt",
"Dutch": "nld",
"Western Persian": "pes",
"Polish": "pol",
"Portuguese": "por",
"Romanian": "ron",
"Russian": "rus",
"Slovak": "slk",
"Spanish": "spa",
"Swedish": "swe",
"Swahili": "swh",
"Telugu": "tel",
"Tagalog": "tgl",
"Thai": "tha",
"Turkish": "tur",
"Ukrainian": "ukr",
"Urdu": "urd",
"Northern Uzbek": "uzn",
"Vietnamese": "vie"
}
# Global variables to hold component references
components = {}
dotenv.load_dotenv()
seamless_client = Client("https://facebook-seamless-m4t.hf.space/--replicas/7sv2b/") #TruEra
HuggingFace_Token = os.getenv("HuggingFace_Token")
hf_token = os.getenv("HuggingFace_Token")
device = "cuda" if torch.cuda.is_available() else "cpu"
image_description = ""
# audio_output = ""
# global markdown_output
# global audio_output
def check_hallucination(assertion, citation):
print("Entering check_hallucination function")
api_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
header = {"Authorization": f"Bearer {hf_token}"}
payload = {"inputs": f"{assertion} [SEP] {citation}"}
response = requests.post(api_url, headers=header, json=payload, timeout=120)
output = response.json()
output = output[0][0]["score"]
print(f"check_hallucination output: {output}")
return f"**hallucination score:** {output}"
# Define the API parameters
vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
headers = {"Authorization": f"Bearer {hf_token}"}
# Function to query the API
def query(payload):
print("Entering query function")
response = requests.post(vapi_url, headers=headers, json=payload)
print(f"API response: {response.json()}")
return response.json()
# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
print("Entering evaluate_hallucination function")
combined_input = f"{input1}[SEP]{input2}"
output = query({"inputs": combined_input})
score = output[0][0]['score']
if score < 0.5:
label = f"🔴 High risk. Score: {score:.2f}"
else:
label = f"🟢 Low risk. Score: {score:.2f}"
print(f"evaluate_hallucination label: {label}")
return label
def save_audio(audio_input, output_dir="saved_audio"):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# Extract sample rate and audio data
sample_rate, audio_data = audio_input
# Generate a unique file name
file_name = f"audio_{int(time.time())}.wav"
file_path = os.path.join(output_dir, file_name)
# Save the audio file
sf.write(file_path, audio_data, sample_rate)
return file_path
def save_image(image_input, output_dir="saved_images"):
print("Entering save_image function")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
if isinstance(image_input, np.ndarray):
image = Image.fromarray(image_input)
file_name = f"image_{int(time.time())}.png"
file_path = os.path.join(output_dir, file_name)
image.save(file_path)
print(f"Image saved at: {file_path}")
return file_path
else:
raise ValueError("Invalid image input type")
def process_image(image_file_path):
print("Entering process_image function")
client = Client("https://tonic1-official-qwen-vl-chat.hf.space/--replicas/86976/") # TruEra
try:
result = client.predict(
"Describe this image in detail, identify every detail in this image. Describe the image the best you can.",
image_file_path,
fn_index=0
)
print(f"Image processing result: {result}")
return result
except Exception as e:
print(f"Error in process_image: {e}")
return f"Error occurred during image processing: {e}"
def process_speech(audio_input, source_language, target_language="English"):
print("Entering process_speech function")
if audio_input is None:
return "No audio input provided."
try:
result = seamless_client.predict(
audio_input,
source_language,
target_language,
api_name="/s2tt"
)
print(f"Speech processing result: {result}")
return result
except Exception as e:
print(f"Error in process_speech: {str(e)}")
return f"Error in speech processing: {str(e)}"
def convert_text_to_speech(input_text, source_language, target_language):
print("Entering convert_text_to_speech function")
try:
result = seamless_client.predict(
input_text,
source_language,
target_language,
api_name="/t2st"
)
audio_file_path = result[0] if result else None
translated_text = result[1] if result else ""
print(f"Text-to-speech conversion result: Audio file path: {audio_file_path}, Translated text: {translated_text}")
return audio_file_path, translated_text
except Exception as e:
print(f"Error in convert_text_to_speech: {str(e)}")
return None, f"Error in text-to-speech conversion: {str(e)}"
def query_vectara(text):
user_message = text
customer_id = os.getenv('CUSTOMER_ID')
corpus_id = os.getenv('CORPUS_ID')
api_key = os.getenv('API_KEY')
# Define the headers
api_key_header = {
"customer-id": customer_id,
"x-api-key": api_key
}
# Define the request body in the structure provided in the example
request_body = {
"query": [
{
"query": user_message,
"queryContext": "",
"start": 1,
"numResults": 25,
"contextConfig": {
"charsBefore": 0,
"charsAfter": 0,
"sentencesBefore": 2,
"sentencesAfter": 2,
"startTag": "%START_SNIPPET%",
"endTag": "%END_SNIPPET%",
},
"rerankingConfig": {
"rerankerId": 272725718,
"mmrConfig": {
"diversityBias": 0.35
}
},
"corpusKey": [
{
"customerId": customer_id,
"corpusId": corpus_id,
"semantics": 0,
"metadataFilter": "",
"lexicalInterpolationConfig": {
"lambda": 0
},
"dim": []
}
],
"summary": [
{
"maxSummarizedResults": 5,
"responseLang": "auto",
"summarizerPromptName": "vectara-summary-ext-v1.2.0"
}
]
}
]
}
# Make the API request using Gradio
response = requests.post(
"https://api.vectara.io/v1/query",
json=request_body, # Use json to automatically serialize the request body
verify=True,
headers=api_key_header
)
if response.status_code == 200:
query_data = response.json()
if query_data:
sources_info = []
# Extract the summary.
summary = query_data['responseSet'][0]['summary'][0]['text']
# Iterate over all response sets
for response_set in query_data.get('responseSet', []):
# Extract sources
# Limit to top 5 sources.
for source in response_set.get('response', [])[:5]:
source_metadata = source.get('metadata', [])
source_info = {}
for metadata in source_metadata:
metadata_name = metadata.get('name', '')
metadata_value = metadata.get('value', '')
if metadata_name == 'title':
source_info['title'] = metadata_value
elif metadata_name == 'author':
source_info['author'] = metadata_value
elif metadata_name == 'pageNumber':
source_info['page number'] = metadata_value
if source_info:
sources_info.append(source_info)
result = {"summary": summary, "sources": sources_info}
return f"{json.dumps(result, indent=2)}"
else:
return "No data found in the response."
else:
return f"Error: {response.status_code}"
def wrap_text(text, width=90):
print("Wrapping text...")
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True) #TruEra
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True).eval()
class ChatBot:
def __init__(self):
self.history = None
def predict(self, user_input, system_prompt=""):
print("Generating prediction...")
response, self.history = model.chat(tokenizer, user_input, history=self.history, system=system_prompt)
return response
bot = ChatBot()
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
print("Processing multimodal prompt...")
return bot.predict(user_input, system_prompt)
def process_summary_with_qwen(summary):
print("Processing summary with Qwen...")
system_prompt = "You are a medical instructor. Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description."
response_text = bot.predict(summary, system_prompt)
return response_text
def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
try:
print("Processing and querying...")
combined_text = ""
markdown_output = ""
image_text = ""
print(f"Image Input Type: {type(image_input)}, Audio Input Type: {type(audio_input)}")
if image_input is not None:
print("Processing image input...")
image_file_path = save_image(image_input)
image_text = process_image(image_file_path)
combined_text += "\n\n**Image Input:**\n" + image_text
elif audio_input is not None:
print("Processing audio input...")
sample_rate, audio_data = audio_input
audio_file_path = save_audio(audio_input)
audio_text = process_speech(audio_file_path, input_language, "English")
combined_text += "\n\n**Audio Input:**\n" + audio_text
elif text_input is not None and text_input.strip():
print("Processing text input...")
combined_text += "The user asks the query above to his health adviser: " + text_input
else:
return "Error: Please provide some input (text, audio, or image)."
if image_text:
markdown_output += "\n### Original Image Description\n"
markdown_output += image_text + "\n"
print("Querying Vectara...")
vectara_response_json = query_vectara(combined_text)
vectara_response = json.loads(vectara_response_json)
summary = vectara_response.get('summary', 'No summary available')
sources_info = vectara_response.get('sources', [])
markdown_output = "### Vectara Response Summary\n"
markdown_output += f"* **Summary**: {summary}\n"
markdown_output += "### Sources Information\n"
for source in sources_info:
markdown_output += f"* {source}\n"
final_response = process_summary_with_qwen(summary)
print("Converting text to speech...")
target_language = "English"
audio_output, translated_text = convert_text_to_speech(final_response, target_language, input_language)
print("Evaluating hallucination...")
try:
hallucination_label = evaluate_hallucination(final_response, summary)
except Exception as e:
print(f"Error in hallucination evaluation: {e}")
hallucination_label = "Evaluation skipped due to the model loading. For evaluation results, please try again in 29 minutes."
markdown_output += "\n### Processed Summary with Qwen\n"
markdown_output += final_response + "\n"
markdown_output += "\n### Hallucination Evaluation\n"
markdown_output += f"* **Label**: {hallucination_label}\n"
markdown_output += "\n### Translated Text\n"
markdown_output += translated_text + "\n"
return markdown_output, audio_output
except Exception as e:
print(f"Error occurred: {e}")
return f"Error occurred during processing: {e}.", None
def clear():
return "English", None, None, "", None
def create_interface():
with gr.Blocks(theme='ParityError/Anime') as interface:
# Display the welcome message
gr.Markdown(welcome_message)
# Extract the full names of the languages
language_names = list(languages.keys())
# Add a 'None' or similar option to represent no selection
input_language_options = ["None"] + language_names
# Create a dropdown for language selection
input_language = gr.Dropdown(input_language_options, label="Select the language", value="English", interactive=True)
with gr.Accordion("Use Voice", open=False) as voice_accordion:
audio_input = gr.Audio(label="Speak")
audio_output = gr.Markdown(label="Output text") # Markdown component for audio
gr.Examples([["audio1.wav"], ["audio2.wav"], ], inputs=[audio_input])
with gr.Accordion("Use a Picture", open=False) as picture_accordion:
image_input = gr.Image(label="Upload image")
image_output = gr.Markdown(label="Output text") # Markdown component for image
gr.Examples([["image1.png"], ["image2.jpeg"], ["image3.jpeg"], ], inputs=[image_input])
with gr.Accordion("MultiMed", open=False) as multimend_accordion:
text_input = gr.Textbox(label="Use Text", lines=3, placeholder="I have had a sore throat and phlegm for a few days and now my cough has gotten worse!")
gr.Examples([
["What is the proper treatment for buccal herpes?"],
["I have had a sore throat and hoarse voice for several days and now a strong cough recently "],
["How does cellular metabolism work TCA cycle"],
["What special care must be provided to children with chicken pox?"],
["When and how often should I wash my hands?"],
["بکل ہرپس کا صحیح علاج کیا ہے؟"],
["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
], inputs=[text_input])
text_output = gr.Markdown(label="MultiMed")
audio_output = gr.Audio(label="Audio Out", type="filepath")
text_button = gr.Button("Use MultiMed")
text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, audio_output])
clear_button = gr.Button("Clear")
clear_button.click(clear, inputs=[], outputs=[input_language, audio_input, image_input, text_output, audio_output])
return interface
app = create_interface()
app.launch(show_error=True, debug=True) |