File size: 18,789 Bytes
722ecec
fd10b6c
39dff4c
 
 
28b69ba
4dc9e5f
3eb706b
f877950
ad65b09
f877950
eae970b
 
16c1c4f
5b1e208
16c1c4f
ad65b09
53714db
db06812
53714db
db06812
53714db
db06812
53714db
db06812
 
53714db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f4cece
 
7dc22ca
6f4a565
a31fde9
fa57d02
91f8c28
 
f877950
 
967b8e7
 
f877950
7dc22ca
f877950
7311b6e
f877950
 
 
a31fde9
f877950
a31fde9
abe552f
a31fde9
7311b6e
9bda859
f86940b
f877950
215f2d8
f877950
 
 
215f2d8
 
 
 
7311b6e
f877950
7311b6e
215f2d8
 
 
 
7311b6e
 
215f2d8
 
 
7311b6e
215f2d8
874e011
215f2d8
874e011
7bd7744
7311b6e
 
f877950
4dc9e5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f877950
be77a46
7311b6e
be77a46
 
 
 
 
 
 
 
 
7311b6e
be77a46
 
 
 
7311b6e
dccea39
7311b6e
b43370d
dccea39
aa09b5b
7311b6e
db06812
 
dccea39
7311b6e
dccea39
 
7311b6e
dccea39
aa09b5b
be77a46
176abe0
7311b6e
f877950
db06812
86a924b
db06812
176abe0
770ea37
 
db06812
86a924b
7311b6e
db06812
 
7311b6e
db06812
603805b
db06812
7311b6e
db06812
 
 
 
 
 
 
 
 
a543a78
7311b6e
db06812
5a0e49a
7311b6e
5a0e49a
ff4e34f
 
 
f877950
 
 
4854a72
176b9ce
 
f877950
 
176b9ce
 
 
 
4854a72
 
 
176b9ce
d354d71
d1b23d4
176b9ce
 
 
 
 
 
 
 
 
 
 
d50b1d6
176b9ce
 
 
4854a72
f877950
 
176b9ce
 
 
 
 
 
 
 
 
 
d354d71
32cbfb2
176b9ce
4854a72
 
 
 
bb31795
 
176b9ce
4854a72
 
176b9ce
4854a72
176b9ce
4854a72
f2e5be8
722ecec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eae970b
7311b6e
eae970b
 
 
 
f877950
e42cb34
ab8e798
eae970b
 
 
ab8e798
eae970b
ab8e798
7311b6e
ab8e798
 
f877950
23e856e
 
ab8e798
7311b6e
ab8e798
 
7311b6e
 
 
e3af7cd
eae970b
 
41cbd00
7311b6e
8de78b2
8586313
7311b6e
2f101a3
7311b6e
 
6de3447
7311b6e
751b072
7311b6e
fddbec9
 
f38c30e
 
751b072
7311b6e
3853615
4dc9e5f
7311b6e
9bda859
2f101a3
252dd70
7311b6e
8b11b91
415223e
d456b20
57f52ca
25b2322
6de3447
25b2322
6de3447
0b6ead0
7311b6e
 
0b6ead0
 
 
 
5c14e87
 
 
 
437879c
5c14e87
db06812
8eb3297
7311b6e
 
ea5be1b
7311b6e
 
2256c70
 
 
 
 
 
5c14e87
db06812
5c14e87
 
 
93ae82c
f308688
5c14e87
a2ac4ba
7311b6e
c03a440
7311b6e
2256c70
5c14e87
f877950
0b077bd
86a924b
eb0e999
967b8e7
c797359
950e427
d2609b3
 
583b605
 
 
53ded4b
583b605
 
 
d2609b3
967b8e7
c797359
81be9c7
a783c53
967b8e7
c797359
 
732e3f7
a783c53
967b8e7
c797359
 
d2609b3
86a924b
 
 
a783c53
86a924b
 
 
 
 
 
967b8e7
00136b0
 
 
dac51d0
86a924b
 
 
80d8737
86a924b
80d8737
a783c53
9db4018
f877950
967b8e7
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
from gradio_client import Client
import numpy as np
import gradio as gr
import requests
import json
import dotenv
import soundfile as sf
import time
import textwrap
from PIL import Image
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import os
import uuid
import optimum


welcome_message = """
# 👋🏻Welcome to ⚕🗣️😷TruEra - MultiMed ⚕🗣️😷

🗣️📝 This is an accessible and multimodal tool optimized using TruEra! We evaluated several configurations, prompts, and models to optimize this application. 

### How To Use ⚕🗣️😷TruEra - MultiMed⚕: 

🗣️📝Interact with ⚕🗣️😷TruEra - MultiMed⚕ in any language using image, audio or text. ⚕🗣️😷TruEra - MultiMed is an accessible application 📚🌟💼 that uses [Qwen/Qwen-1_8B-Chat](https://huggingface.co/Qwen/Qwen-1_8B-Chat) and [Tonic1/Official-Qwen-VL-Chat](https://huggingface.co/Qwen/Qwen-VL-Chat) with [Vectara](https://huggingface.co/vectara) embeddings + retrieval w/ [facebook/seamless-m4t-v2-large](https://huggingface.co/facebook/hf-seamless-m4t-large) for audio translation & accessibility.
do [get in touch](https://discord.gg/GWpVpekp). You can also use 😷TruEra MultiMed⚕️ on your own data & in your own way by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/TeamTonic/MultiMed?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
### Join us : 

🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community on 👻Discord: [Discord](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Polytonic](https://github.com/tonic-ai) & contribute to 🌟 [PolyGPT](https://github.com/tonic-ai/polygpt-alpha)"             
"""


languages = {
    "English": "eng",
    "Modern Standard Arabic": "arb",
    "Bengali": "ben",
    "Catalan": "cat",
    "Czech": "ces",
    "Mandarin Chinese": "cmn",
    "Welsh": "cym",
    "Danish": "dan",
    "German": "deu",
    "Estonian": "est",
    "Finnish": "fin",
    "French": "fra",
    "Hindi": "hin",
    "Indonesian": "ind",
    "Italian": "ita",
    "Japanese": "jpn",
    "Korean": "kor",
    "Maltese": "mlt",
    "Dutch": "nld",
    "Western Persian": "pes",
    "Polish": "pol",
    "Portuguese": "por",
    "Romanian": "ron",
    "Russian": "rus",
    "Slovak": "slk",
    "Spanish": "spa",
    "Swedish": "swe",
    "Swahili": "swh",
    "Telugu": "tel",
    "Tagalog": "tgl",
    "Thai": "tha",
    "Turkish": "tur",
    "Ukrainian": "ukr",
    "Urdu": "urd",
    "Northern Uzbek": "uzn",
    "Vietnamese": "vie"
}


# Global variables to hold component references
components = {}
dotenv.load_dotenv()
seamless_client = Client("https://facebook-seamless-m4t.hf.space/--replicas/7sv2b/") #TruEra
HuggingFace_Token = os.getenv("HuggingFace_Token")
hf_token = os.getenv("HuggingFace_Token")
device = "cuda" if torch.cuda.is_available() else "cpu"

image_description = "" 
# audio_output = ""
# global markdown_output
# global audio_output


def check_hallucination(assertion, citation):
    print("Entering check_hallucination function")
    api_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"
    header = {"Authorization": f"Bearer {hf_token}"}
    payload = {"inputs": f"{assertion} [SEP] {citation}"}

    response = requests.post(api_url, headers=header, json=payload, timeout=120)
    output = response.json()
    output = output[0][0]["score"]

    print(f"check_hallucination output: {output}")
    return f"**hallucination score:** {output}"


# Define the API parameters
vapi_url = "https://api-inference.huggingface.co/models/vectara/hallucination_evaluation_model"

headers = {"Authorization": f"Bearer {hf_token}"}


# Function to query the API
def query(payload):
    print("Entering query function")
    response = requests.post(vapi_url, headers=headers, json=payload)
    print(f"API response: {response.json()}")
    return response.json()

# Function to evaluate hallucination
def evaluate_hallucination(input1, input2):
    print("Entering evaluate_hallucination function")
    combined_input = f"{input1}[SEP]{input2}"
    
    output = query({"inputs": combined_input})
    score = output[0][0]['score']

    if score < 0.5:
        label = f"🔴 High risk. Score: {score:.2f}"
    else:
        label = f"🟢 Low risk. Score: {score:.2f}"

    print(f"evaluate_hallucination label: {label}")
    return label

def save_audio(audio_input, output_dir="saved_audio"):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    # Extract sample rate and audio data
    sample_rate, audio_data = audio_input

    # Generate a unique file name
    file_name = f"audio_{int(time.time())}.wav"
    file_path = os.path.join(output_dir, file_name)

    # Save the audio file
    sf.write(file_path, audio_data, sample_rate)

    return file_path


def save_image(image_input, output_dir="saved_images"):
    print("Entering save_image function")
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    if isinstance(image_input, np.ndarray):
        image = Image.fromarray(image_input)
        file_name = f"image_{int(time.time())}.png"
        file_path = os.path.join(output_dir, file_name)
        image.save(file_path)

        print(f"Image saved at: {file_path}")
        return file_path
    else:
        raise ValueError("Invalid image input type")


def process_image(image_file_path):
    print("Entering process_image function")
    client = Client("https://tonic1-official-qwen-vl-chat.hf.space/--replicas/86976/")  # TruEra
    try:
        result = client.predict(
            "Describe this image in detail, identify every detail in this image. Describe the image the best you can.",
            image_file_path,
            fn_index=0
        )
        print(f"Image processing result: {result}")
        return result
    except Exception as e:
        print(f"Error in process_image: {e}")
        return f"Error occurred during image processing: {e}"


def process_speech(audio_input, source_language, target_language="English"):
    print("Entering process_speech function")
    if audio_input is None:
        return "No audio input provided."
    try:
        result = seamless_client.predict(
            audio_input,
            source_language,
            target_language,
            api_name="/s2tt"
        )
        print(f"Speech processing result: {result}")
        return result
    except Exception as e:
        print(f"Error in process_speech: {str(e)}")
        return f"Error in speech processing: {str(e)}"

def convert_text_to_speech(input_text, source_language, target_language):
    print("Entering convert_text_to_speech function")
    try:
        result = seamless_client.predict(
            input_text,  
            source_language, 
            target_language,  
            api_name="/t2st"
        )
        audio_file_path = result[0] if result else None
        translated_text = result[1] if result else ""

        print(f"Text-to-speech conversion result: Audio file path: {audio_file_path}, Translated text: {translated_text}")
        return audio_file_path, translated_text
    except Exception as e:
        print(f"Error in convert_text_to_speech: {str(e)}")
        return None, f"Error in text-to-speech conversion: {str(e)}"

def query_vectara(text):
    user_message = text
    customer_id = os.getenv('CUSTOMER_ID')
    corpus_id = os.getenv('CORPUS_ID')
    api_key = os.getenv('API_KEY')

    # Define the headers
    api_key_header = {
        "customer-id": customer_id,
        "x-api-key": api_key
    }

    # Define the request body in the structure provided in the example
    request_body = {
        "query": [
            {
                "query": user_message,
                "queryContext": "",
                "start": 1,
                "numResults": 25,
                "contextConfig": {
                    "charsBefore": 0,
                    "charsAfter": 0,
                    "sentencesBefore": 2,
                    "sentencesAfter": 2,
                    "startTag": "%START_SNIPPET%",
                    "endTag": "%END_SNIPPET%",
                },
                "rerankingConfig": {
                    "rerankerId": 272725718,
                    "mmrConfig": {
                        "diversityBias": 0.35
                    }
                },
                "corpusKey": [
                    {
                        "customerId": customer_id,
                        "corpusId": corpus_id,
                        "semantics": 0,
                        "metadataFilter": "",
                        "lexicalInterpolationConfig": {
                            "lambda": 0
                        },
                        "dim": []
                    }
                ],
                "summary": [
                    {
                        "maxSummarizedResults": 5,
                        "responseLang": "auto",
                        "summarizerPromptName": "vectara-summary-ext-v1.2.0"
                    }
                ]
            }
        ]
    }

    # Make the API request using Gradio
    response = requests.post(
        "https://api.vectara.io/v1/query",
        json=request_body,  # Use json to automatically serialize the request body
        verify=True,
        headers=api_key_header
    )

    if response.status_code == 200:
        query_data = response.json()
        if query_data:
            sources_info = []

            # Extract the summary.
            summary = query_data['responseSet'][0]['summary'][0]['text']

            # Iterate over all response sets
            for response_set in query_data.get('responseSet', []):
                # Extract sources
                # Limit to top 5 sources.
                for source in response_set.get('response', [])[:5]:
                    source_metadata = source.get('metadata', [])
                    source_info = {}

                    for metadata in source_metadata:
                        metadata_name = metadata.get('name', '')
                        metadata_value = metadata.get('value', '')

                        if metadata_name == 'title':
                            source_info['title'] = metadata_value
                        elif metadata_name == 'author':
                            source_info['author'] = metadata_value
                        elif metadata_name == 'pageNumber':
                            source_info['page number'] = metadata_value

                    if source_info:
                        sources_info.append(source_info)

            result = {"summary": summary, "sources": sources_info}
            return f"{json.dumps(result, indent=2)}"
        else:
            return "No data found in the response."
    else:
        return f"Error: {response.status_code}"


def wrap_text(text, width=90):
    print("Wrapping text...")
    lines = text.split('\n')
    wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
    wrapped_text = '\n'.join(wrapped_lines)
    return wrapped_text

tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-1_8B-Chat", trust_remote_code=True) #TruEra
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-1_8B-Chat", device_map="auto", trust_remote_code=True).eval()

class ChatBot:
    def __init__(self):
        self.history = None

    def predict(self, user_input, system_prompt=""):
        print("Generating prediction...")
        response, self.history = model.chat(tokenizer, user_input, history=self.history, system=system_prompt)
        return response

bot = ChatBot()

def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
    print("Processing multimodal prompt...")
    return bot.predict(user_input, system_prompt)

def process_summary_with_qwen(summary):
    print("Processing summary with Qwen...")
    system_prompt = "You are a medical instructor. Assess and describe the proper options to your students in minute detail. Propose a course of action for them to base their recommendations on based on your description."
    response_text = bot.predict(summary, system_prompt)
    return response_text



def process_and_query(input_language=None, audio_input=None, image_input=None, text_input=None):
    try:
        print("Processing and querying...")
        combined_text = ""
        markdown_output = ""
        image_text = ""
        print(f"Image Input Type: {type(image_input)}, Audio Input Type: {type(audio_input)}")

        if image_input is not None:
            print("Processing image input...")
            image_file_path = save_image(image_input)
            image_text = process_image(image_file_path)
            combined_text += "\n\n**Image Input:**\n" + image_text

        elif audio_input is not None:
            print("Processing audio input...")
            sample_rate, audio_data = audio_input
            audio_file_path = save_audio(audio_input)
            audio_text = process_speech(audio_file_path, input_language, "English")
            combined_text += "\n\n**Audio Input:**\n" + audio_text

        elif text_input is not None and text_input.strip():
            print("Processing text input...")
            combined_text += "The user asks the query above to his health adviser: " + text_input

        else:
            return "Error: Please provide some input (text, audio, or image)."

        if image_text:
            markdown_output += "\n### Original Image Description\n"
            markdown_output += image_text + "\n"

        print("Querying Vectara...")
        vectara_response_json = query_vectara(combined_text)
        vectara_response = json.loads(vectara_response_json)
        summary = vectara_response.get('summary', 'No summary available')
        sources_info = vectara_response.get('sources', [])

        markdown_output = "### Vectara Response Summary\n"
        markdown_output += f"* **Summary**: {summary}\n"
        markdown_output += "### Sources Information\n"
        for source in sources_info:
            markdown_output += f"* {source}\n"

        final_response = process_summary_with_qwen(summary)

        print("Converting text to speech...")
        target_language = "English"
        audio_output, translated_text = convert_text_to_speech(final_response, target_language, input_language)

        print("Evaluating hallucination...")
        try:
            hallucination_label = evaluate_hallucination(final_response, summary)
        except Exception as e:
            print(f"Error in hallucination evaluation: {e}")
            hallucination_label = "Evaluation skipped due to the model loading. For evaluation results, please try again in 29 minutes."


        markdown_output += "\n### Processed Summary with Qwen\n"
        markdown_output += final_response + "\n"
        markdown_output += "\n### Hallucination Evaluation\n"
        markdown_output += f"* **Label**: {hallucination_label}\n"
        markdown_output += "\n### Translated Text\n"
        markdown_output += translated_text + "\n"

        return markdown_output, audio_output

    except Exception as e:
        print(f"Error occurred: {e}")
        return f"Error occurred during processing: {e}.", None


def clear():
    return "English", None, None, "", None


def create_interface():
    with gr.Blocks(theme='ParityError/Anime') as interface:
        # Display the welcome message
        gr.Markdown(welcome_message)
        # Extract the full names of the languages
        language_names = list(languages.keys())

        # Add a 'None' or similar option to represent no selection
        input_language_options = ["None"] + language_names

        # Create a dropdown for language selection
        input_language = gr.Dropdown(input_language_options, label="Select the language", value="English", interactive=True)
        
        with gr.Accordion("Use Voice", open=False) as voice_accordion:
            audio_input = gr.Audio(label="Speak")
            audio_output = gr.Markdown(label="Output text")  # Markdown component for audio
            gr.Examples([["audio1.wav"], ["audio2.wav"], ], inputs=[audio_input])

        with gr.Accordion("Use a Picture", open=False) as picture_accordion:
            image_input = gr.Image(label="Upload image")
            image_output = gr.Markdown(label="Output text")  # Markdown component for image
            gr.Examples([["image1.png"], ["image2.jpeg"], ["image3.jpeg"], ], inputs=[image_input])

        with gr.Accordion("MultiMed", open=False) as multimend_accordion:
            text_input = gr.Textbox(label="Use Text", lines=3, placeholder="I have had a sore throat and phlegm for a few days and now my cough has gotten worse!")
        
            gr.Examples([
                ["What is the proper treatment for buccal herpes?"],
                ["I have had a sore throat and hoarse voice for several days and now a strong cough recently "],
                ["How does cellular metabolism work TCA cycle"],
                ["What special care must be provided to children with chicken pox?"],
                ["When and how often should I wash my hands?"],
                ["بکل ہرپس کا صحیح علاج کیا ہے؟"],
                ["구강 헤르페스의 적절한 치료법은 무엇입니까?"],
                ["Je, ni matibabu gani sahihi kwa herpes ya buccal?"],
            ], inputs=[text_input])

        text_output = gr.Markdown(label="MultiMed")  
        audio_output = gr.Audio(label="Audio Out", type="filepath")
        
        text_button = gr.Button("Use MultiMed")
        text_button.click(process_and_query, inputs=[input_language, audio_input, image_input, text_input], outputs=[text_output, audio_output])

        clear_button = gr.Button("Clear")
        clear_button.click(clear, inputs=[], outputs=[input_language, audio_input, image_input, text_output, audio_output])

    return interface


app = create_interface()
app.launch(show_error=True, debug=True)