|
import os |
|
import math |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import gradio as gr |
|
import sentencepiece |
|
from tokenization_xgen import XgenTokenizer |
|
|
|
title = "Welcome to 🙋🏻♂️Tonic's😈Xgen-8K Chat!" |
|
description = "Interestingly there simply wasnt a public demo for Xgen, So I made one. You can use [Salesforce/xgen-7b-8k-inst](https://huggingface.co/Salesforce/xgen-7b-8k-inst) via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/Tonic1/Xgen?duplicate=true) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Let's build together!." |
|
|
|
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50' |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
model_name = "Salesforce/xgen-7b-8k-base" |
|
tokenizer = XgenTokenizer.from_pretrained("./") |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto") |
|
model = model.to(dtype=torch.bfloat16) |
|
model = model.to(device) |
|
|
|
class XgenChatBot: |
|
def __init__(self, model, tokenizer, system_message="You are Xgen, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."): |
|
self.model = model |
|
self.tokenizer = tokenizer |
|
self.system_message = system_message |
|
|
|
def set_system_message(self, new_system_message): |
|
self.system_message = new_system_message |
|
|
|
def format_prompt(self, user_message): |
|
prompt = f"<|im_start|>assistant\n{self.system_message}<|im_end|>\n<|im_start|>\nuser\n{user_message}<|im_end|>\nassistant\n" |
|
return prompt |
|
|
|
def predict(self, user_message, temperature=0.4, max_new_tokens=70, top_p=0.99, repetition_penalty=1.9): |
|
prompt = self.format_prompt(user_message) |
|
inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False) |
|
input_ids = inputs["input_ids"].to(self.model.device) |
|
|
|
output_ids = self.model.generate( |
|
input_ids, |
|
max_length=input_ids.shape[1] + max_new_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=True |
|
) |
|
|
|
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
return response |
|
|
|
def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty): |
|
Orca_bot.set_system_message(system_message) |
|
response = Orca_bot.predict(user_message, temperature, max_new_tokens, top_p, repetition_penalty) |
|
return response |
|
|
|
Orca_bot = OrcaChatBot(model, tokenizer) |
|
|
|
iface = gr.Interface( |
|
fn=gradio_predict, |
|
title=title, |
|
description=description, |
|
inputs=[ |
|
gr.Textbox(label="Your Message", type="text", lines=3), |
|
gr.Textbox(label="Introduce a Character Here or Set a Scene (system prompt)", type="text", lines=2), |
|
gr.Slider(label="Max new tokens", value=550, minimum=360, maximum=600, step=1), |
|
gr.Slider(label="Temperature", value=0.1, minimum=0.05, maximum=1.0, step=0.05), |
|
gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05), |
|
gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05) |
|
], |
|
outputs="text", |
|
theme="ParityError/Anime" |
|
) |
|
|
|
iface.queue(max_size=5).launch() |