Tulu / app.py
Tonic's picture
Update app.py
a3c3064
raw
history blame
4.79 kB
from transformers import AutoConfig, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM, MistralForCausalLM
from peft import PeftModel, PeftConfig
import torch
import gradio as gr
import random
from textwrap import wrap
# Functions to Wrap the Prompt Correctly
def wrap_text(text, width=90):
lines = text.split('\n')
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
wrapped_text = '\n'.join(wrapped_lines)
return wrapped_text
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
"""
Generates text using a large language model, given a user input and a system prompt.
Args:
user_input: The user's input text to generate a response for.
system_prompt: Optional system prompt.
Returns:
A string containing the generated text.
"""
# Combine user input and system prompt
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
# Encode the input text
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
model_inputs = encodeds.to(device)
# Generate a response using the model
output = model.generate(
**model_inputs,
max_length=max_length,
use_cache=True,
early_stopping=True,
bos_token_id=model.config.bos_token_id,
eos_token_id=model.config.eos_token_id,
pad_token_id=model.config.eos_token_id,
temperature=0.1,
do_sample=True
)
# Decode the response
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
return response_text
# Define the device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Use the base model's ID
base_model_id = "mistralai/Mistral-7B-v0.1"
model_directory = "Tonic/mistralmed"
# Instantiate the Tokenizer
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True, padding_side="left")
# tokenizer = AutoTokenizer.from_pretrained("Tonic/mistralmed", trust_remote_code=True, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = 'left'
# Specify the configuration class for the model
#model_config = AutoConfig.from_pretrained(base_model_id)
# Load the PEFT model with the specified configuration
#peft_model = AutoModelForCausalLM.from_pretrained(base_model_id, config=model_config)
# Load the PEFT model
peft_config = PeftConfig.from_pretrained("Tonic/mistralmed")
peft_model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1", trust_remote_code=True)
peft_model = PeftModel.from_pretrained(peft_model, "Tonic/mistralmed")
class ChatBot:
def __init__(self):
self.history = []
class ChatBot:
def __init__(self):
# Initialize the ChatBot class with an empty history
self.history = []
def predict(self, user_input, system_prompt="You are an expert medical analyst:"):
# Combine the user's input with the system prompt
formatted_input = f"<s>[INST]{system_prompt} {user_input}[/INST]"
# Encode the formatted input using the tokenizer
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
# Generate a response using the PEFT model
response = peft_model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
# Decode the generated response to text
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
return response_text # Return the generated response
bot = ChatBot()
title = "๐Ÿ‘‹๐Ÿปํ† ๋‹‰์˜ ๋ฏธ์ŠคํŠธ๋ž„๋ฉ”๋“œ ์ฑ„ํŒ…์— ์˜ค์‹  ๊ฒƒ์„ ํ™˜์˜ํ•ฉ๋‹ˆ๋‹ค๐Ÿš€๐Ÿ‘‹๐ŸปWelcome to Tonic's MistralMed Chat๐Ÿš€"
description = "์ด ๊ณต๊ฐ„์„ ์‚ฌ์šฉํ•˜์—ฌ ํ˜„์žฌ ๋ชจ๋ธ์„ ํ…Œ์ŠคํŠธํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) ๋˜๋Š” ์ด ๊ณต๊ฐ„์„ ๋ณต์ œํ•˜๊ณ  ๋กœ์ปฌ ๋˜๋Š” ๐Ÿค—HuggingFace์—์„œ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. [Discord์—์„œ ํ•จ๊ป˜ ๋งŒ๋“ค๊ธฐ ์œ„ํ•ด Discord์— ๊ฐ€์ž…ํ•˜์‹ญ์‹œ์˜ค](https://discord.gg/VqTxc76K3u). You can use this Space to test out the current model [(Tonic/MistralMed)](https://huggingface.co/Tonic/MistralMed) or duplicate this Space and use it locally or on ๐Ÿค—HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
iface = gr.Interface(
fn=bot.predict,
title=title,
description=description,
examples=examples,
inputs=["text", "text"], # Take user input and system prompt separately
outputs="text",
theme="ParityError/Anime"
)
iface.launch()