ldm_variations / app.py
j
change output labeling and add timestamped output filenames
cb86770
raw
history blame
2.37 kB
from pyharp import ModelCard, build_endpoint, save_and_return_filepath
from audiotools import AudioSignal
from audioldm import build_model, text_to_audio
import gradio as gr
import soundfile as sf
from datetime import datetime
audioldm = build_model(model_name="audioldm-m-full")
def process_fn(input_audio_path, seed, guidance_scale, num_inference_steps, num_candidates, audio_length_in_s):
waveform = text_to_audio(
audioldm,
'placeholder',
input_audio_path,
seed = int(seed),
duration = audio_length_in_s,
guidance_scale = guidance_scale,
n_candidate_gen_per_text = int(num_candidates),
ddim_steps = int(num_inference_steps)
)
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
filename = f"./ldm_variations_{timestamp}.wav"
sf.write(filename, waveform[0, 0], samplerate=16000)
#save_wave(waveform, "./", name="output.wav")
return filename
card = ModelCard(
name='AudioLDM Variations',
description='AudioLDM Variation Generator, operates on region selected in track.',
author='Team Audio',
tags=['AudioLDM', 'Variations', 'audio-to-audio']
)
with gr.Blocks() as webapp:
# Define your Gradio interface
inputs = [
gr.Audio(
label="Audio Input",
type="filepath"
),
gr.Slider(
label="seed",
minimum="0",
maximum="65535",
value="43534",
step="1"
),
gr.Slider(
minimum=0, maximum=10,
step=0.1, value=2.5,
label="Guidance Scale"
),
gr.Slider(
minimum=1, maximum=500,
step=1, value=200,
label="Inference Steps"
),
gr.Slider(
minimum=1, maximum=10,
step=1, value=1,
label="Candidates"
),
gr.Slider(
minimum=2.5, maximum=10.0,
step=2.5, value=5,
label="Duration"
),
]
output = gr.Audio(label="Audio Output", type="filepath", format="wav", elem_id="audio")
ctrls_data, ctrls_button, process_button, cancel_button = build_endpoint(inputs, output, process_fn, card)
# queue the webapp: https://www.gradio.app/guides/setting-up-a-demo-for-maximum-performance
webapp.queue()
webapp.launch(share=True)