import streamlit as st import asyncio import os from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate from langchain.vectorstores import Chroma from langchain.embeddings import OpenAIEmbeddings from langchain.chat_models import ChatOpenAI from PyPDF2 import PdfReader import aiohttp from io import BytesIO # Set up API key os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"] # Set up prompts system_template = "Use the following context to answer a user's question. If you cannot find the answer in the context, say you don't know the answer." system_role_prompt = SystemMessagePromptTemplate.from_template(system_template) user_prompt_template = "Context:\n{context}\n\nQuestion:\n{question}" user_role_prompt = HumanMessagePromptTemplate.from_template(user_prompt_template) # Define RetrievalAugmentedQAPipeline class class RetrievalAugmentedQAPipeline: def __init__(self, llm: ChatOpenAI, vector_db: Chroma) -> None: self.llm = llm self.vector_db = vector_db async def arun_pipeline(self, user_query: str): context_docs = self.vector_db.similarity_search(user_query, k=2) context_list = [doc.page_content for doc in context_docs] context_prompt = "\n".join(context_list) max_context_length = 12000 if len(context_prompt) > max_context_length: context_prompt = context_prompt[:max_context_length] formatted_system_prompt = system_role_prompt.format() formatted_user_prompt = user_role_prompt.format(question=user_query, context=context_prompt) response = await self.llm.agenerate([formatted_system_prompt, formatted_user_prompt]) return {"response": response.generations[0][0].text, "context": context_list} # PDF processing functions async def fetch_pdf(session, url): async with session.get(url) as response: if response.status == 200: return await response.read() else: st.error(f"Failed to fetch PDF from {url}") return None async def process_pdf(pdf_content): pdf_reader = PdfReader(BytesIO(pdf_content)) text = "\n".join([page.extract_text() for page in pdf_reader.pages]) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) return text_splitter.split_text(text) @st.cache_resource def initialize_pipeline(): return asyncio.run(main()) # Main execution async def main(): pdf_urls = [ "https://www.whitehouse.gov/wp-content/uploads/2022/10/Blueprint-for-an-AI-Bill-of-Rights.pdf", "https://nvlpubs.nist.gov/nistpubs/ai/NIST.AI.600-1.pdf", ] all_chunks = [] async with aiohttp.ClientSession() as session: pdf_contents = await asyncio.gather(*[fetch_pdf(session, url) for url in pdf_urls]) for pdf_content in pdf_contents: if pdf_content: chunks = await process_pdf(pdf_content) all_chunks.extend(chunks) st.write(f"Created {len(all_chunks)} chunks from {len(pdf_urls)} PDF files") embeddings = OpenAIEmbeddings() vector_db = Chroma.from_texts(all_chunks, embeddings) chat_openai = ChatOpenAI() return RetrievalAugmentedQAPipeline(vector_db=vector_db, llm=chat_openai) # Streamlit UI st.title("AI Bill of Rights Q&A") pipeline = initialize_pipeline() user_query = st.text_input("Enter your question about the AI Bill of Rights:") if user_query: result = asyncio.run(pipeline.arun_pipeline(user_query)) st.write("Response:") st.write(result["response"]) st.write("Context used:") for i, context in enumerate(result["context"], 1): st.write(f"{i}. {context[:100]}...") if __name__ == "__main__": st.run()