Spaces:
Build error
Build error
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_community.document_loaders import PyMuPDFLoader | |
from qdrant_client import QdrantClient | |
from qdrant_client.http.models import Distance, VectorParams | |
from langchain_openai.embeddings import OpenAIEmbeddings | |
from langchain.storage import LocalFileStore | |
from langchain_qdrant import QdrantVectorStore | |
from langchain.embeddings import CacheBackedEmbeddings | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain_core.globals import set_llm_cache | |
from langchain_openai import ChatOpenAI | |
from langchain_core.caches import InMemoryCache | |
from operator import itemgetter | |
from langchain_core.runnables.passthrough import RunnablePassthrough | |
import uuid | |
import chainlit as cl | |
### Global Section ### | |
chat_model = ChatOpenAI(model="gpt-4o-mini") | |
set_llm_cache(InMemoryCache()) | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100) | |
rag_system_prompt_template = """\ | |
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existance of context. | |
""" | |
rag_message_list = [{"role" : "system", "content" : rag_system_prompt_template},] | |
rag_user_prompt_template = """\ | |
Question: | |
{question} | |
Context: | |
{context} | |
""" | |
chat_prompt = ChatPromptTemplate.from_messages([("system", rag_system_prompt_template), ("human", rag_user_prompt_template)]) | |
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small") | |
collection_name = f"pdf_to_parse_{uuid.uuid4()}" | |
client = QdrantClient(":memory:") | |
client.create_collection(collection_name=collection_name,vectors_config=VectorParams(size=1536, distance=Distance.COSINE)) | |
store = LocalFileStore("./cache/") | |
cached_embedder = CacheBackedEmbeddings.from_bytes_store(core_embeddings, store, namespace=core_embeddings.model) | |
vectorstore = QdrantVectorStore(client=client,collection_name=collection_name,embedding=cached_embedder) | |
Loader = PyMuPDFLoader | |
### On Chat Start (Session Start) Section ### | |
async def on_chat_start(): | |
files = await cl.AskFileMessage( | |
content="Please upload a PDF file to begin.", | |
accept=["application/pdf"], | |
max_size_mb=20, | |
timeout=180, | |
).send() | |
if not files: | |
await cl.Message(content="No file was uploaded. Please try again.").send() | |
return | |
file = files[0] | |
msg = cl.Message(content=f"Processing `{file.name}`...") | |
await msg.send() | |
# Save the file locally | |
with open(file.name, "wb") as f: | |
f.write(file.content) | |
# Load and process the document | |
loader = Loader(file.name) | |
documents = loader.load() | |
docs = text_splitter.split_documents(documents) | |
for i, doc in enumerate(docs): | |
doc.metadata["source"] = f"source_{i}" | |
# Add documents to the vectorstore | |
vectorstore.add_documents(docs) | |
# Create retriever | |
retriever = vectorstore.as_retriever() | |
# Create RAG chain | |
global retrieval_augmented_qa_chain | |
retrieval_augmented_qa_chain = ( | |
{"context": itemgetter("question") | retriever, "question": itemgetter("question")} | |
| RunnablePassthrough.assign(context=itemgetter("context")) | |
| chat_prompt | |
| chat_model | |
) | |
await cl.Message(content=f"`{file.name}` processed. Ask me questions!.").send() | |
### Rename Chains ### | |
def rename(orig_author: str): | |
return "AI PDF Assistant" | |
### On Message Section ### | |
async def main(message: cl.Message): | |
response = retrieval_augmented_qa_chain.invoke({"question": message.content}) | |
await cl.Message(content=response.content).send() |