Spaces:
Runtime error
Runtime error
File size: 7,649 Bytes
71bd54f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import torch
import matplotlib.pyplot as plt
from tqdm.autonotebook import tqdm
import pywt
import os
def display_eval(epoch, epochs, tlength, global_step, tcorrect, tsamples, t_valid_samples, average_train_loss, average_valid_loss, total_acc_val):
tqdm.write(
f'Epoch: [{epoch + 1}/{epochs}], Step [{global_step}/{epochs*tlength}] | Train Loss: {average_train_loss: .3f} \
| Train Accuracy: {tcorrect / tsamples: .3f} \
| Val Loss: {average_valid_loss: .3f} \
| Val Accuracy: {total_acc_val / t_valid_samples: .3f}')
def save_model(model, optimizer, valid_loss, epoch, path='model.pt'):
torch.save({'valid_loss': valid_loss,
'model_state_dict': model.state_dict(),
'epoch': epoch + 1,
'optimizer': optimizer.state_dict()
}, path)
tqdm.write(f'Model saved to ==> {path}')
def save_metrics(train_loss_list, valid_loss_list, global_steps_list, path='metrics.pt'):
torch.save({'train_loss_list': train_loss_list,
'valid_loss_list': valid_loss_list,
'global_steps_list': global_steps_list,
}, path)
def plot_losses(metrics_save_name='metrics', save_dir='./'):
path = f'{save_dir}metrics_{metrics_save_name}.pt'
state = torch.load(path)
train_loss_list = state['train_loss_list']
valid_loss_list = state['valid_loss_list']
global_steps_list = state['global_steps_list']
plt.plot(global_steps_list, train_loss_list, label='Train')
plt.plot(global_steps_list, valid_loss_list, label='Valid')
plt.xlabel('Global Steps')
plt.ylabel('Loss')
plt.legend()
plt.show()
def train_RNN(epochs, train_loader, valid_loader, model, loss_fn, optimizer, eval_every=0.25, best_valid_loss=float("Inf"), device='cuda', model_save_name='', save_dir='./'):
model.train()
running_loss = 0.0
valid_running_loss = 0.0
global_step = 0
train_loss_list = []
valid_loss_list = []
global_steps_list = []
wavelet = 'db4'
level = 3
for epoch in tqdm(range(epochs)):
running_loss = 0.0
t_correct = 0
t_samples = 0
for images, labels, notes in train_loader:
optimizer.zero_grad()
coeffs = pywt.wavedec(images, wavelet, level=level, axis=1)
threshold = 0.1 * \
torch.median(torch.abs(torch.from_numpy(coeffs[-1])))
denoised_coeffs = [pywt.threshold(
data=c, mode='hard', value=threshold) for c in coeffs]
images = pywt.waverec(denoised_coeffs, wavelet, axis=1)
images = torch.tensor(images).float().to(device)
labels = labels.to(device)
notes = notes.to(device)
output = model(images, notes)
loss = loss_fn(output, labels.float())
running_loss += loss.item()*len(labels)
loss.backward()
global_step += 1*len(images)
optimizer.step()
values, indices = torch.max(output, dim=1)
t_correct += sum(1 for s, i in enumerate(indices)
if labels[s][i] == 1)
t_samples += len(indices)
if (global_step % (int(eval_every*len(train_loader.dataset)))) < train_loader.batch_size:
model.eval()
valid_running_loss = 0.0
total_acc_val = 0
with torch.no_grad():
for images, labels, notes in valid_loader:
coeffs = pywt.wavedec(
images, wavelet, level=level, axis=1)
threshold = 0.1 * \
torch.median(
torch.abs(torch.from_numpy(coeffs[-1])))
denoised_coeffs = [pywt.threshold(
data=c, mode='hard', value=threshold) for c in coeffs]
images = pywt.waverec(denoised_coeffs, wavelet, axis=1)
images = torch.tensor(images).float().to(device)
labels = labels.to(device)
notes = notes.to(device)
output = model(images, notes)
loss = loss_fn(output, labels.float()).item()
valid_running_loss += loss*len(images)
values, indices = torch.max(output, dim=1)
total_acc_val += sum(1 for s,
i in enumerate(indices) if labels[s][i] == 1)
# evaluation
average_train_loss = running_loss / t_samples
average_valid_loss = valid_running_loss / \
len(valid_loader.dataset)
train_loss_list.append(average_train_loss)
valid_loss_list.append(average_valid_loss)
global_steps_list.append(global_step)
display_eval(epoch, epochs, len(train_loader.dataset), global_step, t_correct, t_samples, len(
valid_loader.dataset), average_train_loss, average_valid_loss, total_acc_val)
# resetting running values
model.train()
if best_valid_loss > average_valid_loss:
best_valid_loss = average_valid_loss
save_model(model, optimizer, best_valid_loss, epoch,
path=f'{save_dir}model_{model_save_name}.pt')
save_metrics(train_loss_list, valid_loss_list,
global_steps_list, path=f'{save_dir}metrics_{model_save_name}.pt')
save_metrics(train_loss_list, valid_loss_list, global_steps_list,
path=f'{save_dir}metrics_{model_save_name}.pt')
print("Training complete.")
return model
def evaluate_RNN(model, test_loader, device="cuda"):
model.eval()
y_pred = []
y_true = []
wavelet = 'db4'
level = 3
total_acc_test = 0
with torch.no_grad():
for images, labels, notes in test_loader:
coeffs = pywt.wavedec(images, wavelet, level=level, axis=1)
threshold = 0.1 * \
torch.median(torch.abs(torch.from_numpy(coeffs[-1])))
denoised_coeffs = [pywt.threshold(
data=c, mode='hard', value=threshold) for c in coeffs]
images = pywt.waverec(denoised_coeffs, wavelet, axis=1)
images = torch.tensor(images).float().to(device)
labels = labels.to(device)
notes = notes.to(device)
output = model(images, notes)
values, indices = torch.max(output, dim=1)
y_pred.extend(indices.tolist())
y_true.extend(labels.tolist())
total_acc_test += sum(1 for s,
i in enumerate(indices) if labels[s][i] == 1)
test_accuracy = total_acc_test / len(test_loader.dataset)
print(f'Test Accuracy: {test_accuracy: .3f}')
return test_accuracy
def rename_with_acc(save_name, save_dir, acc):
acc = round(acc*100)
# Rename model
new_model_name = f'{save_dir}model_{save_name}_acc_{acc}.pt'
new_metrics_name = f'{save_dir}metrics_{save_name}_acc_{acc}.pt'
if os.path.isfile(new_model_name):
os.remove(new_model_name)
if os.path.isfile(new_metrics_name):
os.remove(new_metrics_name)
os.rename(f'{save_dir}model_{save_name}.pt',
f'{save_dir}model_{save_name}_acc_{acc}.pt')
# Rename metrics
os.rename(f'{save_dir}metrics_{save_name}.pt',
f'{save_dir}metrics_{save_name}_acc_{acc}.pt')
|