File size: 7,649 Bytes
71bd54f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import torch
import matplotlib.pyplot as plt
from tqdm.autonotebook import tqdm
import pywt
import os


def display_eval(epoch, epochs, tlength, global_step, tcorrect, tsamples, t_valid_samples, average_train_loss, average_valid_loss, total_acc_val):
    tqdm.write(
        f'Epoch: [{epoch + 1}/{epochs}], Step [{global_step}/{epochs*tlength}] | Train Loss: {average_train_loss: .3f} \
        | Train Accuracy: {tcorrect / tsamples: .3f} \
        | Val Loss: {average_valid_loss: .3f} \
        | Val Accuracy: {total_acc_val / t_valid_samples: .3f}')


def save_model(model, optimizer, valid_loss, epoch, path='model.pt'):
    torch.save({'valid_loss': valid_loss,
                'model_state_dict': model.state_dict(),
                'epoch': epoch + 1,
                'optimizer': optimizer.state_dict()
                }, path)
    tqdm.write(f'Model saved to ==> {path}')


def save_metrics(train_loss_list, valid_loss_list, global_steps_list, path='metrics.pt'):
    torch.save({'train_loss_list': train_loss_list,
                'valid_loss_list': valid_loss_list,
                'global_steps_list': global_steps_list,
                }, path)


def plot_losses(metrics_save_name='metrics', save_dir='./'):
    path = f'{save_dir}metrics_{metrics_save_name}.pt'
    state = torch.load(path)

    train_loss_list = state['train_loss_list']
    valid_loss_list = state['valid_loss_list']
    global_steps_list = state['global_steps_list']

    plt.plot(global_steps_list, train_loss_list, label='Train')
    plt.plot(global_steps_list, valid_loss_list, label='Valid')
    plt.xlabel('Global Steps')
    plt.ylabel('Loss')
    plt.legend()
    plt.show()


def train_RNN(epochs, train_loader, valid_loader, model, loss_fn, optimizer, eval_every=0.25, best_valid_loss=float("Inf"), device='cuda', model_save_name='', save_dir='./'):
    model.train()

    running_loss = 0.0
    valid_running_loss = 0.0
    global_step = 0
    train_loss_list = []
    valid_loss_list = []
    global_steps_list = []

    wavelet = 'db4'
    level = 3

    for epoch in tqdm(range(epochs)):
        running_loss = 0.0
        t_correct = 0
        t_samples = 0
        for images, labels, notes in train_loader:
            optimizer.zero_grad()

            coeffs = pywt.wavedec(images, wavelet, level=level, axis=1)
            threshold = 0.1 * \
                torch.median(torch.abs(torch.from_numpy(coeffs[-1])))
            denoised_coeffs = [pywt.threshold(
                data=c, mode='hard', value=threshold) for c in coeffs]
            images = pywt.waverec(denoised_coeffs, wavelet, axis=1)

            images = torch.tensor(images).float().to(device)
            labels = labels.to(device)
            notes = notes.to(device)

            output = model(images, notes)

            loss = loss_fn(output, labels.float())
            running_loss += loss.item()*len(labels)
            loss.backward()
            global_step += 1*len(images)

            optimizer.step()

            values, indices = torch.max(output, dim=1)
            t_correct += sum(1 for s, i in enumerate(indices)
                             if labels[s][i] == 1)
            t_samples += len(indices)

            if (global_step % (int(eval_every*len(train_loader.dataset)))) < train_loader.batch_size:
                model.eval()
                valid_running_loss = 0.0
                total_acc_val = 0
                with torch.no_grad():

                    for images, labels, notes in valid_loader:

                        coeffs = pywt.wavedec(
                            images, wavelet, level=level, axis=1)
                        threshold = 0.1 * \
                            torch.median(
                                torch.abs(torch.from_numpy(coeffs[-1])))
                        denoised_coeffs = [pywt.threshold(
                            data=c, mode='hard', value=threshold) for c in coeffs]
                        images = pywt.waverec(denoised_coeffs, wavelet, axis=1)

                        images = torch.tensor(images).float().to(device)
                        labels = labels.to(device)
                        notes = notes.to(device)
                        output = model(images, notes)

                        loss = loss_fn(output, labels.float()).item()
                        valid_running_loss += loss*len(images)
                        values, indices = torch.max(output, dim=1)
                        total_acc_val += sum(1 for s,
                                             i in enumerate(indices) if labels[s][i] == 1)

                # evaluation
                average_train_loss = running_loss / t_samples
                average_valid_loss = valid_running_loss / \
                    len(valid_loader.dataset)
                train_loss_list.append(average_train_loss)
                valid_loss_list.append(average_valid_loss)
                global_steps_list.append(global_step)

                display_eval(epoch, epochs, len(train_loader.dataset), global_step, t_correct, t_samples, len(
                    valid_loader.dataset), average_train_loss, average_valid_loss, total_acc_val)

                # resetting running values
                model.train()

                if best_valid_loss > average_valid_loss:
                    best_valid_loss = average_valid_loss
                    save_model(model, optimizer, best_valid_loss, epoch,
                               path=f'{save_dir}model_{model_save_name}.pt')
                    save_metrics(train_loss_list, valid_loss_list,
                                 global_steps_list, path=f'{save_dir}metrics_{model_save_name}.pt')

    save_metrics(train_loss_list, valid_loss_list, global_steps_list,
                 path=f'{save_dir}metrics_{model_save_name}.pt')
    print("Training complete.")
    return model


def evaluate_RNN(model, test_loader, device="cuda"):
    model.eval()
    y_pred = []
    y_true = []

    wavelet = 'db4'
    level = 3

    total_acc_test = 0
    with torch.no_grad():
        for images, labels, notes in test_loader:
            coeffs = pywt.wavedec(images, wavelet, level=level, axis=1)
            threshold = 0.1 * \
                torch.median(torch.abs(torch.from_numpy(coeffs[-1])))
            denoised_coeffs = [pywt.threshold(
                data=c, mode='hard', value=threshold) for c in coeffs]
            images = pywt.waverec(denoised_coeffs, wavelet, axis=1)

            images = torch.tensor(images).float().to(device)
            labels = labels.to(device)
            notes = notes.to(device)
            output = model(images, notes)

            values, indices = torch.max(output, dim=1)
            y_pred.extend(indices.tolist())
            y_true.extend(labels.tolist())
            total_acc_test += sum(1 for s,
                                  i in enumerate(indices) if labels[s][i] == 1)

    test_accuracy = total_acc_test / len(test_loader.dataset)
    print(f'Test Accuracy: {test_accuracy: .3f}')

    return test_accuracy


def rename_with_acc(save_name, save_dir, acc):
    acc = round(acc*100)
    # Rename model
    new_model_name = f'{save_dir}model_{save_name}_acc_{acc}.pt'
    new_metrics_name = f'{save_dir}metrics_{save_name}_acc_{acc}.pt'

    if os.path.isfile(new_model_name):
        os.remove(new_model_name)
    if os.path.isfile(new_metrics_name):
        os.remove(new_metrics_name)

    os.rename(f'{save_dir}model_{save_name}.pt',
              f'{save_dir}model_{save_name}_acc_{acc}.pt')
    # Rename metrics
    os.rename(f'{save_dir}metrics_{save_name}.pt',
              f'{save_dir}metrics_{save_name}_acc_{acc}.pt')