Ji4chenLi
initialize demo
5bec700
from functools import partial
import torch
from torch import nn, einsum
import torch.nn.functional as F
from einops import rearrange, repeat
try:
import xformers
import xformers.ops
XFORMERS_IS_AVAILBLE = True
except:
XFORMERS_IS_AVAILBLE = False
from lvdm.common import (
checkpoint,
exists,
default,
)
from lvdm.basics import (
zero_module,
)
class RelativePosition(nn.Module):
"""https://github.com/evelinehong/Transformer_Relative_Position_PyTorch/blob/master/relative_position.py"""
def __init__(self, num_units, max_relative_position):
super().__init__()
self.num_units = num_units
self.max_relative_position = max_relative_position
self.embeddings_table = nn.Parameter(
torch.Tensor(max_relative_position * 2 + 1, num_units)
)
nn.init.xavier_uniform_(self.embeddings_table)
def forward(self, length_q, length_k):
device = self.embeddings_table.device
range_vec_q = torch.arange(length_q, device=device)
range_vec_k = torch.arange(length_k, device=device)
distance_mat = range_vec_k[None, :] - range_vec_q[:, None]
distance_mat_clipped = torch.clamp(
distance_mat, -self.max_relative_position, self.max_relative_position
)
final_mat = distance_mat_clipped + self.max_relative_position
final_mat = final_mat.long()
embeddings = self.embeddings_table[final_mat]
return embeddings
class CrossAttention(nn.Module):
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
relative_position=False,
temporal_length=None,
img_cross_attention=False,
record_attn_probs=False,
):
super().__init__()
inner_dim = dim_head * heads
context_dim = default(context_dim, query_dim)
self.scale = dim_head**-0.5
self.heads = heads
self.dim_head = dim_head
self.to_q = nn.Linear(query_dim, inner_dim, bias=False)
self.to_k = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v = nn.Linear(context_dim, inner_dim, bias=False)
self.to_out = nn.Sequential(
nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)
)
self.image_cross_attention_scale = 1.0
self.text_context_len = 200
self.img_cross_attention = img_cross_attention
if self.img_cross_attention:
self.to_k_ip = nn.Linear(context_dim, inner_dim, bias=False)
self.to_v_ip = nn.Linear(context_dim, inner_dim, bias=False)
self.relative_position = relative_position
if self.relative_position:
assert temporal_length is not None
self.relative_position_k = RelativePosition(
num_units=dim_head, max_relative_position=temporal_length
)
self.relative_position_v = RelativePosition(
num_units=dim_head, max_relative_position=temporal_length
)
else:
## only used for spatial attention, while NOT for temporal attention
if XFORMERS_IS_AVAILBLE and temporal_length is None:
self.forward = self.efficient_forward
self.record_attn_probs = record_attn_probs
self.attention_probs = None
def forward(self, x, context=None, mask=None):
h = self.heads
q = self.to_q(x)
context = default(context, x)
## considering image token additionally
if context is not None and self.img_cross_attention:
context, context_img = (
context[:, : self.text_context_len, :],
context[:, self.text_context_len :, :],
)
k = self.to_k(context)
v = self.to_v(context)
k_ip = self.to_k_ip(context_img)
v_ip = self.to_v_ip(context_img)
else:
k = self.to_k(context)
v = self.to_v(context)
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (q, k, v))
# Record the attention probs
if self.record_attn_probs:
attention_score = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
self.attention_probs = attention_score.softmax(dim=-1)
sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
if self.relative_position:
len_q, len_k, len_v = q.shape[1], k.shape[1], v.shape[1]
k2 = self.relative_position_k(len_q, len_k)
sim2 = einsum("b t d, t s d -> b t s", q, k2) * self.scale # TODO check
sim += sim2
del k
if exists(mask):
## feasible for causal attention mask only
max_neg_value = -torch.finfo(sim.dtype).max
mask = repeat(mask, "b i j -> (b h) i j", h=h)
sim.masked_fill_(~(mask > 0.5), max_neg_value)
# attention, what we cannot get enough of
sim = sim.softmax(dim=-1)
out = torch.einsum("b i j, b j d -> b i d", sim, v)
if self.relative_position:
v2 = self.relative_position_v(len_q, len_v)
out2 = einsum("b t s, t s d -> b t d", sim, v2) # TODO check
out += out2
out = rearrange(out, "(b h) n d -> b n (h d)", h=h)
## considering image token additionally
if context is not None and self.img_cross_attention:
k_ip, v_ip = map(
lambda t: rearrange(t, "b n (h d) -> (b h) n d", h=h), (k_ip, v_ip)
)
sim_ip = torch.einsum("b i d, b j d -> b i j", q, k_ip) * self.scale
del k_ip
sim_ip = sim_ip.softmax(dim=-1)
out_ip = torch.einsum("b i j, b j d -> b i d", sim_ip, v_ip)
out_ip = rearrange(out_ip, "(b h) n d -> b n (h d)", h=h)
out = out + self.image_cross_attention_scale * out_ip
del q
return self.to_out(out)
def efficient_forward(self, x, context=None, mask=None):
q = self.to_q(x)
context = default(context, x)
## considering image token additionally
if context is not None and self.img_cross_attention:
context, context_img = (
context[:, : self.text_context_len, :],
context[:, self.text_context_len :, :],
)
k = self.to_k(context)
v = self.to_v(context)
k_ip = self.to_k_ip(context_img)
v_ip = self.to_v_ip(context_img)
else:
k = self.to_k(context)
v = self.to_v(context)
b, _, _ = q.shape
# Record the attention probs
if self.record_attn_probs:
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(q, k, v),
)
attention_score = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale
self.attention_probs = attention_score.softmax(dim=-1)
else:
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.contiguous(),
(q, k, v),
)
# actually compute the attention, what we cannot get enough of
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=None)
if not self.record_attn_probs:
out = out.permute(0, 2, 1, 3).reshape(b * self.heads, out.shape[1], self.dim_head)
## considering image token additionally
if context is not None and self.img_cross_attention:
k_ip, v_ip = map(
lambda t: t.unsqueeze(3)
.reshape(b, t.shape[1], self.heads, self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b * self.heads, t.shape[1], self.dim_head)
.contiguous(),
(k_ip, v_ip),
)
out_ip = xformers.ops.memory_efficient_attention(
q, k_ip, v_ip, attn_bias=None, op=None
)
out_ip = (
out_ip.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
if exists(mask):
raise NotImplementedError
out = (
out.unsqueeze(0)
.reshape(b, self.heads, out.shape[1], self.dim_head)
.permute(0, 2, 1, 3)
.reshape(b, out.shape[1], self.heads * self.dim_head)
)
if context is not None and self.img_cross_attention:
out = out + self.image_cross_attention_scale * out_ip
return self.to_out(out)
class BasicTransformerBlock(nn.Module):
def __init__(
self,
dim,
n_heads,
d_head,
dropout=0.0,
context_dim=None,
gated_ff=True,
checkpoint=True,
disable_self_attn=False,
attention_cls=None,
img_cross_attention=False,
record_attn_probs=False,
):
super().__init__()
attn_cls = CrossAttention if attention_cls is None else attention_cls
self.disable_self_attn = disable_self_attn
self.attn1 = attn_cls(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
context_dim=context_dim if self.disable_self_attn else None,
record_attn_probs=record_attn_probs,
)
self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff)
self.attn2 = attn_cls(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
dropout=dropout,
img_cross_attention=img_cross_attention,
)
self.norm1 = nn.LayerNorm(dim)
self.norm2 = nn.LayerNorm(dim)
self.norm3 = nn.LayerNorm(dim)
self.checkpoint = checkpoint
def forward(self, x, context=None, mask=None):
## implementation tricks: because checkpointing doesn't support non-tensor (e.g. None or scalar) arguments
input_tuple = (
x,
) ## should not be (x), otherwise *input_tuple will decouple x into multiple arguments
if context is not None:
input_tuple = (x, context)
if mask is not None:
forward_mask = partial(self._forward, mask=mask)
return checkpoint(forward_mask, (x,), self.parameters(), self.checkpoint)
if context is not None and mask is not None:
input_tuple = (x, context, mask)
return checkpoint(
self._forward, input_tuple, self.parameters(), self.checkpoint
)
def _forward(self, x, context=None, mask=None):
x = (
self.attn1(
self.norm1(x),
context=context if self.disable_self_attn else None,
mask=mask,
)
+ x
)
x = self.attn2(self.norm2(x), context=context, mask=mask) + x
x = self.ff(self.norm3(x)) + x
return x
class SpatialTransformer(nn.Module):
"""
Transformer block for image-like data in spatial axis.
First, project the input (aka embedding)
and reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
NEW: use_linear for more efficiency instead of the 1x1 convs
"""
def __init__(
self,
in_channels,
n_heads,
d_head,
depth=1,
dropout=0.0,
context_dim=None,
use_checkpoint=True,
disable_self_attn=False,
use_linear=False,
img_cross_attention=False,
):
super().__init__()
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = torch.nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
if not use_linear:
self.proj_in = nn.Conv2d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim,
img_cross_attention=img_cross_attention,
disable_self_attn=disable_self_attn,
checkpoint=use_checkpoint,
)
for d in range(depth)
]
)
if not use_linear:
self.proj_out = zero_module(
nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
)
else:
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
self.use_linear = use_linear
def forward(self, x, context=None):
b, c, h, w = x.shape
x_in = x
x = self.norm(x)
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, "b c h w -> b (h w) c").contiguous()
if self.use_linear:
x = self.proj_in(x)
for i, block in enumerate(self.transformer_blocks):
x = block(x, context=context)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, "b (h w) c -> b c h w", h=h, w=w).contiguous()
if not self.use_linear:
x = self.proj_out(x)
return x + x_in
class TemporalTransformer(nn.Module):
"""
Transformer block for image-like data in temporal axis.
First, reshape to b, t, d.
Then apply standard transformer action.
Finally, reshape to image
"""
def __init__(
self,
in_channels,
n_heads,
d_head,
depth=1,
dropout=0.0,
context_dim=None,
use_checkpoint=True,
use_linear=False,
only_self_att=True,
causal_attention=False,
relative_position=False,
temporal_length=None,
record_attn_probs=False,
):
super().__init__()
self.only_self_att = only_self_att
self.relative_position = relative_position
self.causal_attention = causal_attention
self.in_channels = in_channels
inner_dim = n_heads * d_head
self.norm = torch.nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
self.proj_in = nn.Conv1d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
if not use_linear:
self.proj_in = nn.Conv1d(
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
)
else:
self.proj_in = nn.Linear(in_channels, inner_dim)
if relative_position:
assert temporal_length is not None
attention_cls = partial(
CrossAttention, relative_position=True, temporal_length=temporal_length
)
else:
attention_cls = None
if self.causal_attention:
assert temporal_length is not None
self.mask = torch.tril(torch.ones([1, temporal_length, temporal_length]))
if self.only_self_att:
context_dim = None
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
n_heads,
d_head,
dropout=dropout,
context_dim=context_dim,
attention_cls=attention_cls,
checkpoint=use_checkpoint,
record_attn_probs=record_attn_probs,
)
for d in range(depth)
]
)
if not use_linear:
self.proj_out = zero_module(
nn.Conv1d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0)
)
else:
self.proj_out = zero_module(nn.Linear(inner_dim, in_channels))
self.use_linear = use_linear
def forward(self, x, context=None):
b, c, t, h, w = x.shape
x_in = x
x = self.norm(x)
x = rearrange(x, "b c t h w -> (b h w) c t").contiguous()
if not self.use_linear:
x = self.proj_in(x)
x = rearrange(x, "bhw c t -> bhw t c").contiguous()
if self.use_linear:
x = self.proj_in(x)
if self.causal_attention:
mask = self.mask.to(x.device)
mask = repeat(mask, "l i j -> (l bhw) i j", bhw=b * h * w)
else:
mask = None
if self.only_self_att:
## note: if no context is given, cross-attention defaults to self-attention
for i, block in enumerate(self.transformer_blocks):
x = block(x, mask=mask)
x = rearrange(x, "(b hw) t c -> b hw t c", b=b).contiguous()
else:
x = rearrange(x, "(b hw) t c -> b hw t c", b=b).contiguous()
context = rearrange(context, "(b t) l con -> b t l con", t=t).contiguous()
for i, block in enumerate(self.transformer_blocks):
# calculate each batch one by one (since number in shape could not greater then 65,535 for some package)
for j in range(b):
context_j = repeat(
context[j], "t l con -> (t r) l con", r=(h * w) // t, t=t
).contiguous()
## note: causal mask will not applied in cross-attention case
x[j] = block(x[j], context=context_j)
if self.use_linear:
x = self.proj_out(x)
x = rearrange(x, "b (h w) t c -> b c t h w", h=h, w=w).contiguous()
if not self.use_linear:
x = rearrange(x, "b hw t c -> (b hw) c t").contiguous()
x = self.proj_out(x)
x = rearrange(x, "(b h w) c t -> b c t h w", b=b, h=h, w=w).contiguous()
return x + x_in
class GEGLU(nn.Module):
def __init__(self, dim_in, dim_out):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2)
def forward(self, x):
x, gate = self.proj(x).chunk(2, dim=-1)
return x * F.gelu(gate)
class FeedForward(nn.Module):
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0):
super().__init__()
inner_dim = int(dim * mult)
dim_out = default(dim_out, dim)
project_in = (
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU())
if not glu
else GEGLU(dim, inner_dim)
)
self.net = nn.Sequential(
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)
)
def forward(self, x):
return self.net(x)
class LinearAttention(nn.Module):
def __init__(self, dim, heads=4, dim_head=32):
super().__init__()
self.heads = heads
hidden_dim = dim_head * heads
self.to_qkv = nn.Conv2d(dim, hidden_dim * 3, 1, bias=False)
self.to_out = nn.Conv2d(hidden_dim, dim, 1)
def forward(self, x):
b, c, h, w = x.shape
qkv = self.to_qkv(x)
q, k, v = rearrange(
qkv, "b (qkv heads c) h w -> qkv b heads c (h w)", heads=self.heads, qkv=3
)
k = k.softmax(dim=-1)
context = torch.einsum("bhdn,bhen->bhde", k, v)
out = torch.einsum("bhde,bhdn->bhen", context, q)
out = rearrange(
out, "b heads c (h w) -> b (heads c) h w", heads=self.heads, h=h, w=w
)
return self.to_out(out)
class SpatialSelfAttention(nn.Module):
def __init__(self, in_channels):
super().__init__()
self.in_channels = in_channels
self.norm = torch.nn.GroupNorm(
num_groups=32, num_channels=in_channels, eps=1e-6, affine=True
)
self.q = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.k = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.v = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
self.proj_out = torch.nn.Conv2d(
in_channels, in_channels, kernel_size=1, stride=1, padding=0
)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = rearrange(q, "b c h w -> b (h w) c")
k = rearrange(k, "b c h w -> b c (h w)")
w_ = torch.einsum("bij,bjk->bik", q, k)
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = rearrange(v, "b c h w -> b c (h w)")
w_ = rearrange(w_, "b i j -> b j i")
h_ = torch.einsum("bij,bjk->bik", v, w_)
h_ = rearrange(h_, "b c (h w) -> b c h w", h=h)
h_ = self.proj_out(h_)
return x + h_