Spaces:
Sleeping
Sleeping
import streamlit as st | |
import whisper | |
from tempfile import NamedTemporaryFile | |
import ffmpeg | |
st.title("MinuteBot App") | |
# upload audio file with streamlit | |
audio_file = st.file_uploader("Unggah Meeting Audio", type=["mp3", "wav", "m4a"]) | |
# model = whisper.load_model("base") # loading the base model | |
st.text("MinuteBot Model telah dimuat:") | |
def load_whisper_model(): | |
return model | |
if st.sidebar.button("Transkripsikan Audio"): | |
if audio_file is not None: | |
with NamedTemporaryFile() as temp: | |
temp.write(audio_file.getvalue()) | |
temp.seek(0) | |
model = whisper.load_model("large") | |
result = model.transcribe(temp.name) | |
st.write(result["text"]) | |
st.sidebar.header("Putar Berkas Audio") | |
st.sidebar.audio(audio_file) | |
# import streamlit as st | |
# from tempfile import NamedTemporaryFile | |
# import ffmpeg | |
# from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer | |
# import librosa | |
# # HF_TOKEN = os.environ.get("HUGGINGFACEHUB_API_TOKEN") | |
# st.title("TemplarX-Medium-Indonesian Transcription App") | |
# st.text("Model Whisper (TemplarX-medium-Indonesian) telah dimuat:") | |
# def load_whisper_model(): | |
# model_name = "jonnatakusuma/TemplarX-medium-Indonesian" | |
# tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name) | |
# model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=True) | |
# return tokenizer, model | |
# audio_file = st.file_uploader("Unggah Meeting Audio", type=["mp3", "wav", "m4a"]) | |
# if st.sidebar.button("Transkripsikan Audio"): | |
# if audio_file is not None: | |
# with NamedTemporaryFile() as temp: | |
# temp.write(audio_file.read()) | |
# temp.seek(0) | |
# tokenizer, model = load_whisper_model() | |
# # Read the audio file and transcribe using the fine-tuned model | |
# audio_path = temp.name | |
# audio_input, _ = librosa.load(audio_path, sr=16000) | |
# transcription = model.stt(text) | |
# st.write(transcription) | |
# st.sidebar.header("Putar Berkas Audio") | |
# st.sidebar.audio(audio_file, format='audio/wav') | |