File size: 8,337 Bytes
149cc2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213

from typing import Optional

import jax
import jax.numpy as jnp
import flax.linen as nn

import einops

#from flax_memory_efficient_attention import jax_memory_efficient_attention
#from flax_attention import FlaxAttention
from diffusers.models.attention_flax import FlaxAttention


class TransformerPseudo3DModel(nn.Module):
    in_channels: int
    num_attention_heads: int
    attention_head_dim: int
    num_layers: int = 1
    use_memory_efficient_attention: bool = False
    dtype: jnp.dtype = jnp.float32

    def setup(self) -> None:
        inner_dim = self.num_attention_heads * self.attention_head_dim
        self.norm = nn.GroupNorm(
                num_groups = 32,
                epsilon = 1e-5
        )
        self.proj_in = nn.Conv(
                inner_dim,
                kernel_size = (1, 1),
                strides = (1, 1),
                padding = 'VALID',
                dtype = self.dtype
        )
        transformer_blocks = []
        #CheckpointTransformerBlock = nn.checkpoint(
        #        BasicTransformerBlockPseudo3D,
        #        static_argnums = (2,3,4)
        #        #prevent_cse = False
        #)
        CheckpointTransformerBlock = BasicTransformerBlockPseudo3D
        for _ in range(self.num_layers):
            transformer_blocks.append(CheckpointTransformerBlock(
                        dim = inner_dim,
                        num_attention_heads = self.num_attention_heads,
                        attention_head_dim = self.attention_head_dim,
                        use_memory_efficient_attention = self.use_memory_efficient_attention,
                        dtype = self.dtype
                ))
        self.transformer_blocks = transformer_blocks
        self.proj_out = nn.Conv(
                inner_dim,
                kernel_size = (1, 1),
                strides = (1, 1),
                padding = 'VALID',
                dtype = self.dtype
        )

    def __call__(self,
            hidden_states: jax.Array,
            encoder_hidden_states: Optional[jax.Array] = None
    ) -> jax.Array:
        is_video = hidden_states.ndim == 5
        f: Optional[int] = None
        if is_video:
            # jax is channels last
            # b,c,f,h,w WRONG
            # b,f,h,w,c CORRECT
            # b, c, f, h, w = hidden_states.shape
            #hidden_states = einops.rearrange(hidden_states, 'b c f h w -> (b f) c h w')
            b, f, h, w, c = hidden_states.shape
            hidden_states = einops.rearrange(hidden_states, 'b f h w c -> (b f) h w c')

        batch, height, width, channels = hidden_states.shape
        residual = hidden_states
        hidden_states = self.norm(hidden_states)
        hidden_states = self.proj_in(hidden_states)
        hidden_states = hidden_states.reshape(batch, height * width, channels)
        for block in self.transformer_blocks:
            hidden_states = block(
                    hidden_states,
                    encoder_hidden_states,
                    f,
                    height,
                    width
            )
        hidden_states = hidden_states.reshape(batch, height, width, channels)
        hidden_states = self.proj_out(hidden_states)
        hidden_states = hidden_states + residual
        if is_video:
            hidden_states = einops.rearrange(hidden_states, '(b f) h w c -> b f h w c', b = b)
        return hidden_states


class BasicTransformerBlockPseudo3D(nn.Module):
    dim: int
    num_attention_heads: int
    attention_head_dim: int
    use_memory_efficient_attention: bool = False
    dtype: jnp.dtype = jnp.float32

    def setup(self) -> None:
        self.attn1 = FlaxAttention(
                query_dim = self.dim,
                heads = self.num_attention_heads,
                dim_head = self.attention_head_dim,
                use_memory_efficient_attention = self.use_memory_efficient_attention,
                dtype = self.dtype
        )
        self.ff = FeedForward(dim = self.dim, dtype = self.dtype)
        self.attn2 = FlaxAttention(
                query_dim = self.dim,
                heads = self.num_attention_heads,
                dim_head = self.attention_head_dim,
                use_memory_efficient_attention = self.use_memory_efficient_attention,
                dtype = self.dtype
        )
        self.attn_temporal = FlaxAttention(
                query_dim = self.dim,
                heads = self.num_attention_heads,
                dim_head = self.attention_head_dim,
                use_memory_efficient_attention = self.use_memory_efficient_attention,
                dtype = self.dtype
        )
        self.norm1 = nn.LayerNorm(epsilon = 1e-5, dtype = self.dtype)
        self.norm2 = nn.LayerNorm(epsilon = 1e-5, dtype = self.dtype)
        self.norm_temporal = nn.LayerNorm(epsilon = 1e-5, dtype = self.dtype)
        self.norm3 = nn.LayerNorm(epsilon = 1e-5, dtype = self.dtype)

    def __call__(self,
            hidden_states: jax.Array,
            context: Optional[jax.Array] = None,
            frames_length: Optional[int] = None,
            height: Optional[int] = None,
            width: Optional[int] = None
        ) -> jax.Array:
            if context is not None and frames_length is not None:
                context = context.repeat(frames_length, axis = 0)
            # self attention
            norm_hidden_states = self.norm1(hidden_states)
            hidden_states = self.attn1(norm_hidden_states) + hidden_states
            # cross attention
            norm_hidden_states = self.norm2(hidden_states)
            hidden_states = self.attn2(
                    norm_hidden_states,
                    context = context
            ) + hidden_states
            # temporal attention
            if frames_length is not None:
                #bf, hw, c = hidden_states.shape
                # (b f) (h w) c -> b f (h w) c
                #hidden_states = hidden_states.reshape(bf // frames_length, frames_length, hw, c)
                #b, f, hw, c = hidden_states.shape
                # b f (h w) c -> b (h w) f c
                #hidden_states = hidden_states.transpose(0, 2, 1, 3)
                # b (h w) f c -> (b h w) f c
                #hidden_states = hidden_states.reshape(b * hw, frames_length, c)
                hidden_states = einops.rearrange(
                        hidden_states,
                        '(b f) (h w) c -> (b h w) f c',
                        f = frames_length,
                        h = height,
                        w = width
                )
                norm_hidden_states = self.norm_temporal(hidden_states)
                hidden_states = self.attn_temporal(norm_hidden_states) + hidden_states
                # (b h w) f c -> b (h w) f c
                #hidden_states = hidden_states.reshape(b, hw, f, c)
                # b (h w) f c -> b f (h w) c
                #hidden_states = hidden_states.transpose(0, 2, 1, 3)
                # b f h w c -> (b f) (h w) c
                #hidden_states = hidden_states.reshape(bf, hw, c)
                hidden_states = einops.rearrange(
                        hidden_states,
                        '(b h w) f c -> (b f) (h w) c',
                        f = frames_length,
                        h = height,
                        w = width
                )
            norm_hidden_states = self.norm3(hidden_states)
            hidden_states = self.ff(norm_hidden_states) + hidden_states
            return hidden_states


class FeedForward(nn.Module):
    dim: int
    dtype: jnp.dtype = jnp.float32

    def setup(self) -> None:
        self.net_0 = GEGLU(self.dim, self.dtype)
        self.net_2 = nn.Dense(self.dim, dtype = self.dtype)

    def __call__(self, hidden_states: jax.Array) -> jax.Array:
        hidden_states = self.net_0(hidden_states)
        hidden_states = self.net_2(hidden_states)
        return hidden_states


class GEGLU(nn.Module):
    dim: int
    dtype: jnp.dtype = jnp.float32

    def setup(self) -> None:
        inner_dim = self.dim * 4
        self.proj = nn.Dense(inner_dim * 2, dtype = self.dtype)

    def __call__(self, hidden_states: jax.Array) -> jax.Array:
        hidden_states = self.proj(hidden_states)
        hidden_linear, hidden_gelu = jnp.split(hidden_states, 2, axis = 2)
        return hidden_linear * nn.gelu(hidden_gelu)