File size: 25,717 Bytes
149cc2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609

from typing import Any, Optional, Union, Tuple, Dict, List

import os
import random
import math
import time
import numpy as np
from tqdm.auto import tqdm, trange

import torch
from torch.utils.data import DataLoader

import jax
import jax.numpy as jnp
import optax
from flax import jax_utils, traverse_util
from flax.core.frozen_dict import FrozenDict
from flax.training.train_state import TrainState
from flax.training.common_utils import shard

# convert 2D -> 3D
from diffusers import FlaxUNet2DConditionModel

# inference test, run on these on cpu
from diffusers import AutoencoderKL
from diffusers.schedulers.scheduling_ddim_flax import FlaxDDIMScheduler, DDIMSchedulerState
from transformers import CLIPTextModel, CLIPTokenizer
from PIL import Image


from .flax_unet_pseudo3d_condition import UNetPseudo3DConditionModel


def seed_all(seed: int) -> jax.random.PRNGKeyArray:
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    rng = jax.random.PRNGKey(seed)
    return rng

def count_params(
        params: Union[Dict[str, Any],
        FrozenDict[str, Any]],
        filter_name: Optional[str] = None
) -> int:
    p: Dict[Tuple[str], jax.Array] = traverse_util.flatten_dict(params)
    cc = 0
    for k in p:
        if filter_name is not None:
            if filter_name in ' '.join(k):
                cc += len(p[k].flatten())
        else:
            cc += len(p[k].flatten())
    return cc

def map_2d_to_pseudo3d(
        params2d: Dict[str, Any],
        params3d: Dict[str, Any],
        verbose: bool = True
) -> Dict[str, Any]:
    params2d = traverse_util.flatten_dict(params2d)
    params3d = traverse_util.flatten_dict(params3d)
    new_params = dict()
    for k in params3d:
        if 'spatial_conv' in k:
            k2d = list(k)
            k2d.remove('spatial_conv')
            k2d = tuple(k2d)
            if verbose:
                tqdm.write(f'Spatial: {k} <- {k2d}')
            p = params2d[k2d]
        elif k not in params2d:
            if verbose:
                tqdm.write(f'Missing: {k}')
            p = params3d[k]
        else:
            p = params2d[k]
        assert p.shape == params3d[k].shape, f'shape mismatch: {k}: {p.shape} != {params3d[k].shape}'
        new_params[k] = p
    new_params = traverse_util.unflatten_dict(new_params)
    return new_params


class FlaxTrainerUNetPseudo3D:
    def __init__(self,
            model_path: str,
            from_pt: bool = True,
            convert2d: bool = False,
            sample_size: Tuple[int, int] = (64, 64),
            seed: int = 0,
            dtype: str = 'float32',
            param_dtype: str = 'float32',
            only_temporal: bool = True,
            use_memory_efficient_attention = False,
            verbose: bool = True
    ) -> None:
        self.verbose = verbose
        self.tracker: Optional['wandb.sdk.wandb_run.Run'] = None
        self._use_wandb: bool = False
        self._tracker_meta: Dict[str, Union[float, int]] = {
            't00': 0.0,
            't0': 0.0,
            'step0': 0
        }

        self.log('Init JAX')
        self.num_devices = jax.device_count()
        self.log(f'Device count: {self.num_devices}')

        self.seed = seed
        self.rng: jax.random.PRNGKeyArray = seed_all(self.seed)

        self.sample_size = sample_size
        if dtype == 'float32':
            self.dtype = jnp.float32
        elif dtype == 'bfloat16':
            self.dtype = jnp.bfloat16
        elif dtype == 'float16':
            self.dtype = jnp.float16
        else:
            raise ValueError(f'unknown type: {dtype}')
        self.dtype_str: str = dtype
        if param_dtype not in ['float32', 'bfloat16', 'float16']:
            raise ValueError(f'unknown parameter type: {param_dtype}')
        self.param_dtype = param_dtype
        self._load_models(
                model_path = model_path,
                convert2d = convert2d,
                from_pt = from_pt,
                use_memory_efficient_attention = use_memory_efficient_attention
        )
        self._mark_parameters(only_temporal = only_temporal)
        # optionally for validation + sampling
        self.tokenizer: Optional[CLIPTokenizer] = None
        self.text_encoder: Optional[CLIPTextModel] = None
        self.vae: Optional[AutoencoderKL] = None
        self.ddim: Optional[Tuple[FlaxDDIMScheduler, DDIMSchedulerState]] = None

    def log(self, message: Any) -> None:
        if self.verbose and jax.process_index() == 0:
            tqdm.write(str(message))

    def log_metrics(self, metrics: dict, step: int, epoch: int) -> None:
        if jax.process_index() > 0 or (not self.verbose and self.tracker is None):
            return
        now = time.monotonic()
        log_data = {
                'train/step': step,
                'train/epoch': epoch,
                'train/steps_per_sec': (step - self._tracker_meta['step0']) / (now - self._tracker_meta['t0']),
                **{ f'train/{k}': v for k, v in metrics.items() }
        }
        self._tracker_meta['t0'] = now
        self._tracker_meta['step0'] = step
        self.log(log_data)
        if self.tracker is not None:
            self.tracker.log(log_data, step = step)


    def enable_wandb(self, enable: bool = True) -> None:
        self._use_wandb = enable

    def _setup_wandb(self, config: Dict[str, Any] = dict()) -> None:
        import wandb
        import wandb.sdk
        self.tracker: wandb.sdk.wandb_run.Run = wandb.init(
                config = config,
                settings = wandb.sdk.Settings(
                        username = 'anon',
                        host = 'anon',
                        email = 'anon',
                        root_dir = 'anon',
                        _executable = 'anon',
                        _disable_stats = True,
                        _disable_meta = True,
                        disable_code = True,
                        disable_git = True
                ) # pls don't log sensitive data like system user names. also, fuck you for even trying.
        )

    def _init_tracker_meta(self) -> None:
        now = time.monotonic()
        self._tracker_meta = {
            't00': now,
            't0': now,
            'step0': 0
        }

    def _load_models(self,
            model_path: str,
            convert2d: bool,
            from_pt: bool,
            use_memory_efficient_attention: bool
    ) -> None:
        self.log(f'Load pretrained from {model_path}')
        if convert2d:
            self.log('  Convert 2D model to Pseudo3D')
            self.log('    Initiate Pseudo3D model')
            config = UNetPseudo3DConditionModel.load_config(model_path, subfolder = 'unet')
            model = UNetPseudo3DConditionModel.from_config(
                    config,
                    sample_size = self.sample_size,
                    dtype = self.dtype,
                    param_dtype = self.param_dtype,
                    use_memory_efficient_attention = use_memory_efficient_attention
            )
            params: Dict[str, Any] = model.init_weights(self.rng).unfreeze()
            self.log('    Load 2D model')
            model2d, params2d = FlaxUNet2DConditionModel.from_pretrained(
                    model_path,
                    subfolder = 'unet',
                    dtype = self.dtype,
                    from_pt = from_pt
            )
            self.log('    Map 2D -> 3D')
            params = map_2d_to_pseudo3d(params2d, params, verbose = self.verbose)
            del params2d
            del model2d
            del config
        else:
            model, params = UNetPseudo3DConditionModel.from_pretrained(
                    model_path,
                    subfolder = 'unet',
                    from_pt = from_pt,
                    sample_size = self.sample_size,
                    dtype = self.dtype,
                    param_dtype = self.param_dtype,
                    use_memory_efficient_attention = use_memory_efficient_attention
            )
        self.log(f'Cast parameters to {model.param_dtype}')
        if model.param_dtype == 'float32':
            params = model.to_fp32(params)
        elif model.param_dtype == 'float16':
            params = model.to_fp16(params)
        elif model.param_dtype == 'bfloat16':
            params = model.to_bf16(params)
        self.pretrained_model = model_path
        self.model: UNetPseudo3DConditionModel = model
        self.params: FrozenDict[str, Any] = FrozenDict(params)

    def _mark_parameters(self, only_temporal: bool) -> None:
        self.log('Mark training parameters')
        if only_temporal:
            self.log('Only training temporal layers')
        if only_temporal:
            param_partitions = traverse_util.path_aware_map(
                    lambda path, _: 'trainable' if 'temporal' in ' '.join(path) else 'frozen', self.params
            )
        else:
            param_partitions = traverse_util.path_aware_map(
                    lambda *_: 'trainable', self.params
            )
        self.only_temporal = only_temporal
        self.param_partitions: FrozenDict[str, Any] = FrozenDict(param_partitions)
        self.log(f'Total parameters: {count_params(self.params)}')
        self.log(f'Temporal parameters: {count_params(self.params, "temporal")}')

    def _load_inference_models(self) -> None:
        assert jax.process_index() == 0, 'not main process'
        if self.text_encoder is None:
            self.log('Load text encoder')
            self.text_encoder = CLIPTextModel.from_pretrained(
                    self.pretrained_model,
                    subfolder = 'text_encoder'
            )
        if self.tokenizer is None:
            self.log('Load tokenizer')
            self.tokenizer = CLIPTokenizer.from_pretrained(
                    self.pretrained_model,
                    subfolder = 'tokenizer'
            )
        if self.vae is None:
            self.log('Load vae')
            self.vae = AutoencoderKL.from_pretrained(
                    self.pretrained_model,
                    subfolder = 'vae'
            )
        if self.ddim is None:
            self.log('Load ddim scheduler')
            # tuple(scheduler , scheduler state)
            self.ddim = FlaxDDIMScheduler.from_pretrained(
                    self.pretrained_model,
                    subfolder = 'scheduler',
                    from_pt = True
            )

    def _unload_inference_models(self) -> None:
        self.text_encoder = None
        self.tokenizer = None
        self.vae = None
        self.ddim = None

    def sample(self,
            params: Union[Dict[str, Any], FrozenDict[str, Any]],
            prompt: str,
            image_path: str,
            num_frames: int,
            replicate_params: bool = True,
            neg_prompt: str = '',
            steps: int = 50,
            cfg: float = 9.0,
            unload_after_usage: bool = False
    ) -> List[Image.Image]:
        assert jax.process_index() == 0, 'not main process'
        self.log('Sample')
        self._load_inference_models()
        with torch.no_grad():
            tokens = self.tokenizer(
                [ prompt ],
                truncation = True,
                return_overflowing_tokens = False,
                padding = 'max_length',
                return_tensors = 'pt'
            ).input_ids
            neg_tokens = self.tokenizer(
                [ neg_prompt ],
                truncation = True,
                return_overflowing_tokens = False,
                padding = 'max_length',
                return_tensors = 'pt'
            ).input_ids
            encoded_prompt = self.text_encoder(input_ids = tokens).last_hidden_state
            encoded_neg_prompt = self.text_encoder(input_ids = neg_tokens).last_hidden_state
            hint_latent = torch.tensor(np.asarray(Image.open(image_path))).permute(2,0,1).to(torch.float32).div(255).mul(2).sub(1).unsqueeze(0)
            hint_latent = self.vae.encode(hint_latent).latent_dist.mean * self.vae.config.scaling_factor  #0.18215 # deterministic
            hint_latent = hint_latent.unsqueeze(2).repeat_interleave(num_frames, 2)
            mask = torch.zeros_like(hint_latent[:,0:1,:,:,:]) # zero mask, e.g. skip masking for now
            init_latent = torch.randn_like(hint_latent)
            # move to devices
            encoded_prompt = jnp.array(encoded_prompt.numpy())
            encoded_neg_prompt = jnp.array(encoded_neg_prompt.numpy())
            hint_latent = jnp.array(hint_latent.numpy())
            mask = jnp.array(mask.numpy())
            init_latent = init_latent.repeat(jax.device_count(), 1, 1, 1, 1)
            init_latent = jnp.array(init_latent.numpy())
            self.ddim = (self.ddim[0], self.ddim[0].set_timesteps(self.ddim[1], steps))
            timesteps = self.ddim[1].timesteps
            if replicate_params:
                params = jax_utils.replicate(params)
            ddim_state = jax_utils.replicate(self.ddim[1])
            encoded_prompt = jax_utils.replicate(encoded_prompt)
            encoded_neg_prompt = jax_utils.replicate(encoded_neg_prompt)
            hint_latent = jax_utils.replicate(hint_latent)
            mask = jax_utils.replicate(mask)
            # sampling fun
            def sample_loop(init_latent, ddim_state, t, params, encoded_prompt, encoded_neg_prompt, hint_latent, mask):
                latent_model_input = jnp.concatenate([init_latent, mask, hint_latent], axis = 1)
                pred = self.model.apply(
                        { 'params': params },
                        latent_model_input,
                        t,
                        encoded_prompt
                ).sample
                if cfg != 1.0:
                    neg_pred = self.model.apply(
                            { 'params': params },
                            latent_model_input,
                            t,
                            encoded_neg_prompt
                    ).sample
                    pred = neg_pred + cfg * (pred - neg_pred)
                # TODO check if noise is added at the right dimension
                init_latent, ddim_state = self.ddim[0].step(ddim_state, pred, t, init_latent).to_tuple()
                return init_latent, ddim_state
            p_sample_loop = jax.pmap(sample_loop, 'sample', donate_argnums = ())
            pbar_sample = trange(len(timesteps), desc = 'Sample', dynamic_ncols = True, smoothing = 0.1, disable = not self.verbose)
            init_latent = shard(init_latent)
            for i in pbar_sample:
                t = timesteps[i].repeat(self.num_devices)
                t = shard(t)
                init_latent, ddim_state = p_sample_loop(init_latent, ddim_state, t, params, encoded_prompt, encoded_neg_prompt, hint_latent, mask)
            # decode
            self.log('Decode')
            init_latent = torch.tensor(np.array(init_latent))
            init_latent = init_latent / self.vae.config.scaling_factor
            # d:0 b:1 c:2 f:3 h:4 w:5 -> d b f c h w
            init_latent = init_latent.permute(0, 1, 3, 2, 4, 5)
            images = []
            pbar_decode = trange(len(init_latent), desc = 'Decode', dynamic_ncols = True)
            for sample in init_latent:
                ims = self.vae.decode(sample.squeeze()).sample
                ims = ims.add(1).div(2).mul(255).round().clamp(0, 255).to(torch.uint8).permute(0,2,3,1).numpy()
                ims = [ Image.fromarray(x) for x in ims ]
                for im in ims:
                    images.append(im)
                pbar_decode.update(1)
        if unload_after_usage:
            self._unload_inference_models()
        return images

    def get_params_from_state(self, state: TrainState) -> FrozenDict[Any, str]:
        return FrozenDict(jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)))

    def train(self,
            dataloader: DataLoader,
            lr: float,
            num_frames: int,
            log_every_step: int = 10,
            save_every_epoch: int = 1,
            sample_every_epoch: int = 1,
            output_dir: str = 'output',
            warmup: float = 0,
            decay: float = 0,
            epochs: int = 10,
            weight_decay: float = 1e-2
    ) -> None:
        eps = 1e-8
        total_steps = len(dataloader) * epochs
        warmup_steps = math.ceil(warmup * total_steps) if warmup > 0 else 0
        decay_steps = math.ceil(decay * total_steps) + warmup_steps if decay > 0 else warmup_steps + 1
        self.log(f'Total steps:  {total_steps}')
        self.log(f'Warmup steps: {warmup_steps}')
        self.log(f'Decay steps:  {decay_steps - warmup_steps}')
        if warmup > 0 or decay > 0:
            if not decay > 0:
                # only warmup, keep peak lr until end
                self.log('Warmup schedule')
                end_lr = lr
            else:
                # warmup + annealing to end lr
                self.log('Warmup + cosine annealing schedule')
                end_lr = eps
            lr_schedule = optax.warmup_cosine_decay_schedule(
                    init_value = 0.0,
                    peak_value = lr,
                    warmup_steps = warmup_steps,
                    decay_steps = decay_steps,
                    end_value = end_lr
            )
        else:
            # no warmup or decay -> constant lr
            self.log('constant schedule')
            lr_schedule = optax.constant_schedule(value = lr)
        adamw = optax.adamw(
                learning_rate = lr_schedule,
                b1 = 0.9,
                b2 = 0.999,
                eps = eps,
                weight_decay = weight_decay #0.01 # 0.0001
        )
        optim = optax.chain(
                optax.clip_by_global_norm(max_norm = 1.0),
                adamw
        )
        partition_optimizers = {
                'trainable': optim,
                'frozen': optax.set_to_zero()
        }
        tx = optax.multi_transform(partition_optimizers, self.param_partitions)
        state = TrainState.create(
                apply_fn = self.model.__call__,
                params = self.params,
                tx = tx
        )
        validation_rng, train_rngs = jax.random.split(self.rng)
        train_rngs = jax.random.split(train_rngs, jax.local_device_count())

        def train_step(state: TrainState, batch: Dict[str, jax.Array], train_rng: jax.random.PRNGKeyArray):
            def compute_loss(
                    params: Dict[str, Any],
                    batch: Dict[str, jax.Array],
                    sample_rng: jax.random.PRNGKeyArray # unused, dataloader provides everything
            ) -> jax.Array:
                # 'latent_model_input': latent_model_input
                # 'encoder_hidden_states': encoder_hidden_states
                # 'timesteps': timesteps
                # 'noise': noise
                latent_model_input = batch['latent_model_input']
                encoder_hidden_states = batch['encoder_hidden_states']
                timesteps = batch['timesteps']
                noise = batch['noise']
                model_pred = self.model.apply(
                        { 'params': params },
                        latent_model_input,
                        timesteps,
                        encoder_hidden_states
                ).sample
                loss = (noise - model_pred) ** 2
                loss = loss.mean()
                return loss
            grad_fn = jax.value_and_grad(compute_loss)

            def loss_and_grad(
                    train_rng: jax.random.PRNGKeyArray
            ) -> Tuple[jax.Array, Any, jax.random.PRNGKeyArray]:
                sample_rng, train_rng = jax.random.split(train_rng, 2)
                loss, grad = grad_fn(state.params, batch, sample_rng)
                return loss, grad, train_rng

            loss, grad, new_train_rng = loss_and_grad(train_rng)
            # self.log(grad) # NOTE uncomment to visualize gradient
            grad = jax.lax.pmean(grad, axis_name = 'batch')
            new_state = state.apply_gradients(grads = grad)
            metrics: Dict[str, Any] = { 'loss': loss }
            metrics = jax.lax.pmean(metrics, axis_name = 'batch')
            def l2(xs) -> jax.Array:
                return jnp.sqrt(sum([jnp.vdot(x, x) for x in jax.tree_util.tree_leaves(xs)]))
            metrics['l2_grads'] = l2(jax.tree_util.tree_leaves(grad))

            return new_state, metrics, new_train_rng

        p_train_step = jax.pmap(fun = train_step, axis_name = 'batch', donate_argnums = (0, ))
        state = jax_utils.replicate(state)

        train_metrics = []
        train_metric = None

        global_step: int = 0

        if jax.process_index() == 0:
            self._init_tracker_meta()
            hyper_params = {
                    'lr': lr,
                    'lr_warmup': warmup,
                    'lr_decay': decay,
                    'weight_decay': weight_decay,
                    'total_steps': total_steps,
                    'batch_size': dataloader.batch_size // self.num_devices,
                    'num_frames': num_frames,
                    'sample_size': self.sample_size,
                    'num_devices': self.num_devices,
                    'seed': self.seed,
                    'use_memory_efficient_attention': self.model.use_memory_efficient_attention,
                    'only_temporal': self.only_temporal,
                    'dtype': self.dtype_str,
                    'param_dtype': self.param_dtype,
                    'pretrained_model': self.pretrained_model,
                    'model_config': self.model.config
            }
            if self._use_wandb:
                self.log('Setting up wandb')
                self._setup_wandb(hyper_params)
            self.log(hyper_params)
            output_path = os.path.join(output_dir, str(global_step), 'unet')
            self.log(f'saving checkpoint to {output_path}')
            self.model.save_pretrained(
                    save_directory = output_path,
                    params = self.get_params_from_state(state),#jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)),
                    is_main_process = True
            )

        pbar_epoch = tqdm(
                total = epochs,
                desc = 'Epochs',
                smoothing = 1,
                position = 0,
                dynamic_ncols = True,
                leave = True,
                disable = jax.process_index() > 0
        )
        steps_per_epoch = len(dataloader) # TODO dataloader
        for epoch in range(epochs):
            pbar_steps = tqdm(
                    total = steps_per_epoch,
                    desc = 'Steps',
                    position = 1,
                    smoothing = 0.1,
                    dynamic_ncols = True,
                    leave = True,
                    disable = jax.process_index() > 0
            )
            for batch in dataloader:
                # keep input + gt as float32, results in fp32 loss and grad
                # otherwise uncomment the following to cast to the model dtype
                # batch = { k: (v.astype(self.dtype) if v.dtype == np.float32 else v) for k,v in batch.items() }
                batch = shard(batch)
                state, train_metric, train_rngs = p_train_step(
                        state, batch, train_rngs
                )
                train_metrics.append(train_metric)
                if global_step % log_every_step == 0 and jax.process_index() == 0:
                    train_metrics = jax_utils.unreplicate(train_metrics)
                    train_metrics = jax.tree_util.tree_map(lambda *m: jnp.array(m).mean(), *train_metrics)
                    if global_step == 0:
                        self.log(f'grad dtype: {train_metrics["l2_grads"].dtype}')
                        self.log(f'loss dtype: {train_metrics["loss"].dtype}')
                    train_metrics_dict = { k: v.item() for k, v in train_metrics.items() }
                    train_metrics_dict['lr'] = lr_schedule(global_step).item()
                    self.log_metrics(train_metrics_dict, step = global_step, epoch = epoch)
                    train_metrics = []
                pbar_steps.update(1)
                global_step += 1
            if epoch % save_every_epoch == 0 and jax.process_index() == 0:
                output_path = os.path.join(output_dir, str(global_step), 'unet')
                self.log(f'saving checkpoint to {output_path}')
                self.model.save_pretrained(
                        save_directory = output_path,
                        params = self.get_params_from_state(state),#jax.device_get(jax.tree_util.tree_map(lambda x: x[0], state.params)),
                        is_main_process = True
                )
                self.log(f'checkpoint saved ')
            if epoch % sample_every_epoch == 0 and jax.process_index() == 0:
                images = self.sample(
                        params = state.params,
                        replicate_params = False,
                        prompt = 'dancing person',
                        image_path = 'testimage.png',
                        num_frames = num_frames,
                        steps = 50,
                        cfg = 9.0,
                        unload_after_usage = False
                )
                os.makedirs(os.path.join('image_output', str(epoch)), exist_ok = True)
                for i, im in enumerate(images):
                    im.save(os.path.join('image_output', str(epoch), str(i).zfill(5) + '.png'), optimize = True)
            pbar_epoch.update(1)