makeavid-sd-jax / app.py
lopho's picture
gradio app
8c4daf1
raw
history blame
9.23 kB
import os
from io import BytesIO
import base64
from functools import partial
from PIL import Image, ImageOps
import gradio as gr
from makeavid_sd.inference import InferenceUNetPseudo3D, FlaxDPMSolverMultistepScheduler, jnp
_preheat: bool = False
_seen_compilations = set()
_model = InferenceUNetPseudo3D(
model_path = 'TempoFunk/makeavid-sd-jax',
scheduler_cls = FlaxDPMSolverMultistepScheduler,
dtype = jnp.float16,
hf_auth_token = os.environ.get('HUGGING_FACE_HUB_TOKEN', None)
)
# gradio is illiterate. type hints make it go poopoo in pantsu.
def generate(
prompt = 'An elderly man having a great time in the park.',
neg_prompt = '',
image = { 'image': None, 'mask': None },
inference_steps = 20,
cfg = 12.0,
seed = 0,
fps = 24,
num_frames = 24,
height = 512,
width = 512
) -> str:
height = int(height)
width = int(width)
num_frames = int(num_frames)
seed = int(seed)
if seed < 0:
seed = -seed
inference_steps = int(inference_steps)
if image is not None:
hint_image = image['image']
mask_image = image['mask']
else:
hint_image = None
mask_image = None
if hint_image is not None:
if hint_image.mode != 'RGB':
hint_image = hint_image.convert('RGB')
if hint_image.size != (width, height):
hint_image = ImageOps.fit(hint_image, (width, height), method = Image.Resampling.LANCZOS)
if mask_image is not None:
if mask_image.mode != 'L':
mask_image = mask_image.convert('L')
if mask_image.size != (width, height):
mask_image = ImageOps.fit(mask_image, (width, height), method = Image.Resampling.LANCZOS)
images = _model.generate(
prompt = [prompt] * _model.device_count,
neg_prompt = neg_prompt,
hint_image = hint_image,
mask_image = mask_image,
inference_steps = inference_steps,
cfg = cfg,
height = height,
width = width,
num_frames = num_frames,
seed = seed
)
_seen_compilations.add((hint_image is None, inference_steps, height, width, num_frames))
buffer = BytesIO()
images[0].save(
buffer,
format = 'webp',
save_all = True,
append_images = images[1:],
loop = 0,
duration = round(1000 / fps),
allow_mixed = True
)
data = base64.b64encode(buffer.getvalue()).decode()
data = 'data:image/webp;base64,' + data
buffer.close()
return data
def check_if_compiled(image, inference_steps, height, width, num_frames, message):
height = int(height)
width = int(width)
hint_image = None if image is None else image['image']
if (hint_image is None, inference_steps, height, width, num_frames) in _seen_compilations:
return ''
else:
return f"""{message}"""
if _preheat:
print('\npreheating the oven')
generate(
prompt = 'preheating the oven',
neg_prompt = '',
image = { 'image': None, 'mask': None },
inference_steps = 20,
cfg = 12.0,
seed = 0
)
print('Entertaining the guests with sailor songs played on an old piano.')
dada = generate(
prompt = 'Entertaining the guests with sailor songs played on an old harmonium.',
neg_prompt = '',
image = { 'image': Image.new('RGB', size = (512, 512), color = (0, 0, 0)), 'mask': None },
inference_steps = 20,
cfg = 12.0,
seed = 0
)
print('dinner is ready\n')
with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
variant = 'panel'
with gr.Row():
with gr.Column():
intro1 = gr.Markdown("""
# Make-A-Video Stable Diffusion JAX
**Please be patient. The model might have to compile with current parameters.**
This can take up to 5 minutes on the first run, and 2-3 minutes on later runs.
The compilation will be cached and consecutive runs with the same parameters
will be much faster.
""")
with gr.Column():
intro2 = gr.Markdown("""
The following parameters require the model to compile
- Number of frames
- Width & Height
- Steps
- Input image vs. no input image
""")
with gr.Row(variant = variant):
with gr.Column(variant = variant):
with gr.Row():
cancel_button = gr.Button(value = 'Cancel')
submit_button = gr.Button(value = 'Make A Video', variant = 'primary')
prompt_input = gr.Textbox(
label = 'Prompt',
value = 'They are dancing in the club while sweat drips from the ceiling.',
interactive = True
)
neg_prompt_input = gr.Textbox(
label = 'Negative prompt (optional)',
value = '',
interactive = True
)
inference_steps_input = gr.Slider(
label = 'Steps',
minimum = 1,
maximum = 100,
value = 20,
step = 1
)
cfg_input = gr.Slider(
label = 'Guidance scale',
minimum = 1.0,
maximum = 20.0,
step = 0.1,
value = 15.0,
interactive = True
)
seed_input = gr.Number(
label = 'Random seed',
value = 0,
interactive = True,
precision = 0
)
image_input = gr.Image(
label = 'Input image (optional)',
interactive = True,
image_mode = 'RGB',
type = 'pil',
optional = True,
source = 'upload',
tool = 'sketch'
)
num_frames_input = gr.Slider(
label = 'Number of frames to generate',
minimum = 1,
maximum = 24,
step = 1,
value = 24
)
width_input = gr.Slider(
label = 'Width',
minimum = 64,
maximum = 512,
step = 1,
value = 448
)
height_input = gr.Slider(
label = 'Height',
minimum = 64,
maximum = 512,
step = 1,
value = 448
)
fps_input = gr.Slider(
label = 'Output FPS',
minimum = 1,
maximum = 1000,
step = 1,
value = 12
)
with gr.Column(variant = variant):
will_trigger = gr.Markdown('')
patience = gr.Markdown('')
image_output = gr.Image(
label = 'Output',
value = 'example.webp',
interactive = False
)
trigger_inputs = [ image_input, inference_steps_input, height_input, width_input, num_frames_input ]
trigger_check_fun = partial(check_if_compiled, message = 'Current parameters will trigger compilation.')
height_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
width_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
num_frames_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
inference_steps_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
will_trigger.value = trigger_check_fun(image_input.value, inference_steps_input.value, height_input.value, width_input.value, num_frames_input.value)
ev = submit_button.click(
fn = partial(
check_if_compiled,
message = 'Please be patient. The model has to be compiled with current parameters.'
),
inputs = trigger_inputs,
outputs = patience
).then(
fn = generate,
inputs = [
prompt_input,
neg_prompt_input,
image_input,
inference_steps_input,
cfg_input,
seed_input,
fps_input,
num_frames_input,
height_input,
width_input
],
outputs = image_output,
postprocess = False
).then(
fn = trigger_check_fun,
inputs = trigger_inputs,
outputs = will_trigger
)
cancel_button(cancels = ev)
demo.queue(concurrency_count = 1, max_size = 16)
demo.launch()