makeavid-sd-jax / app.py
lopho's picture
last/first frame output, reordering some options, examples
e62836e
raw
history blame
13.8 kB
import os
import json
from io import BytesIO
import base64
from functools import partial
from PIL import Image, ImageOps
import gradio as gr
from makeavid_sd.inference import (
InferenceUNetPseudo3D,
jnp,
SCHEDULERS
)
print(os.environ.get('XLA_PYTHON_CLIENT_PREALLOCATE', 'NotSet'))
print(os.environ.get('XLA_PYTHON_CLIENT_ALLOCATOR', 'NotSet'))
_seen_compilations = set()
_model = InferenceUNetPseudo3D(
model_path = 'TempoFunk/makeavid-sd-jax',
dtype = jnp.float16,
hf_auth_token = os.environ.get('HUGGING_FACE_HUB_TOKEN', None)
)
if _model.failed != False:
trace = f'```{_model.failed}```'
with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
exception = gr.Markdown(trace)
demo.launch()
_examples = []
_expath = 'examples'
for x in os.listdir(_expath):
with open(os.path.join(_expath, x, 'params.json'), 'r') as f:
ex = json.load(f)
ex['image_input'] = None
if os.path.isfile(os.path.join(_expath, x, 'input.png')):
ex['image_input'] = os.path.join(_expath, x, 'input.png')
ex['image_output'] = os.path.join(_expath, x, 'output.gif')
_examples.append(ex)
_output_formats = (
'webp', 'gif'
)
# gradio is illiterate. type hints make it go poopoo in pantsu.
def generate(
prompt = 'An elderly man having a great time in the park.',
neg_prompt = '',
hint_image = None,
inference_steps = 20,
cfg = 15.0,
cfg_image = 9.0,
seed = 0,
fps = 24,
num_frames = 24,
height = 512,
width = 512,
scheduler_type = 'DPM',
output_format = 'webp'
) -> str:
num_frames = int(num_frames)
inference_steps = int(inference_steps)
height = int(height)
width = int(width)
height = (height // 64) * 64
width = (width // 64) * 64
cfg = max(cfg, 1.0)
cfg_image = max(cfg_image, 1.0)
seed = int(seed)
if seed < 0:
seed = -seed
if hint_image is not None:
if hint_image.mode != 'RGB':
hint_image = hint_image.convert('RGB')
if hint_image.size != (width, height):
hint_image = ImageOps.fit(hint_image, (width, height), method = Image.Resampling.LANCZOS)
if scheduler_type not in SCHEDULERS:
scheduler_type = 'DPM'
output_format = output_format.lower()
if output_format not in _output_formats:
output_format = 'webp'
mask_image = None
images = _model.generate(
prompt = [prompt] * _model.device_count,
neg_prompt = neg_prompt,
hint_image = hint_image,
mask_image = mask_image,
inference_steps = inference_steps,
cfg = cfg,
cfg_image = cfg_image,
height = height,
width = width,
num_frames = num_frames,
seed = seed,
scheduler_type = scheduler_type
)
_seen_compilations.add((hint_image is None, inference_steps, height, width, num_frames))
buffer = BytesIO()
images[1].save(
buffer,
format = output_format,
save_all = True,
append_images = images[2:],
loop = 0,
duration = round(1000 / fps),
allow_mixed = True
)
data = f'data:image/{output_format};base64,' + base64.b64encode(buffer.getvalue()).decode()
buffer.close()
buffer = BytesIO()
images[-1].save(buffer, format ='png')
last_data = f'data:image/png;base64,' + base64.b64encode(buffer.getvalue()).decode()
buffer.close()
buffer = BytesIO()
images[0].save(buffer, format ='png')
first_data = f'data:image/png;base64,' + base64.b64encode(buffer.getvalue()).decode()
buffer.close()
return data, last_data, first_data
def check_if_compiled(hint_image, inference_steps, height, width, num_frames, scheduler_type, message):
height = int(height)
width = int(width)
inference_steps = int(inference_steps)
height = (height // 64) * 64
width = (width // 64) * 64
if (hint_image is None, inference_steps, height, width, num_frames, scheduler_type) in _seen_compilations:
return ''
else:
return f"""{message}"""
with gr.Blocks(title = 'Make-A-Video Stable Diffusion JAX', analytics_enabled = False) as demo:
variant = 'panel'
with gr.Row():
with gr.Column():
intro1 = gr.Markdown("""
# Make-A-Video Stable Diffusion JAX
We have extended a pretrained LDM inpainting image generation model with temporal convolutions and attention.
By taking advantage of the extra 5 input channels of the inpaint model, we guide the video generation with a hint image.
In this demo the hint image can be given by the user, otherwise it is generated by an generative image model.
The temporal layers are a port of [Make-A-Video PyTorch](https://github.com/lucidrains/make-a-video-pytorch) to FLAX.
The convolution is pseudo 3D and seperately convolves accross the spatial dimension in 2D and over the temporal dimension in 1D.
Temporal attention is purely self attention and also separately attends to time.
Only the new temporal layers have been fine tuned on a dataset of videos themed around dance.
The model has been trained for 80 epochs on a dataset of 18,000 Videos with 120 frames each, randomly selecting a 24 frame range from each sample.
See model and dataset links in the metadata.
Model implementation and training code can be found at <https://github.com/lopho/makeavid-sd-tpu>
""")
with gr.Column():
intro3 = gr.Markdown("""
**Please be patient. The model might have to compile with current parameters.**
This can take up to 5 minutes on the first run, and 2-3 minutes on later runs.
The compilation will be cached and consecutive runs with the same parameters
will be much faster.
Changes to the following parameters require the model to compile
- Number of frames
- Width & Height
- Inference steps
- Input image vs. no input image
- Noise scheduler type
If you encounter any issues, please report them here: [Space discussions](https://huggingface.co/spaces/TempoFunk/makeavid-sd-jax/discussions)
""")
with gr.Row(variant = variant):
with gr.Column():
with gr.Row():
#cancel_button = gr.Button(value = 'Cancel')
submit_button = gr.Button(value = 'Make A Video', variant = 'primary')
prompt_input = gr.Textbox(
label = 'Prompt',
value = 'They are dancing in the club but everybody is a 3d cg hairy monster wearing a hairy costume.',
interactive = True
)
neg_prompt_input = gr.Textbox(
label = 'Negative prompt (optional)',
value = 'monochrome, saturated',
interactive = True
)
cfg_input = gr.Slider(
label = 'Guidance scale video',
minimum = 1.0,
maximum = 20.0,
step = 0.1,
value = 15.0,
interactive = True
)
cfg_image_input = gr.Slider(
label = 'Guidance scale hint (no effect with input image)',
minimum = 1.0,
maximum = 20.0,
step = 0.1,
value = 9.0,
interactive = True
)
seed_input = gr.Number(
label = 'Random seed',
value = 0,
interactive = True,
precision = 0
)
image_input = gr.Image(
label = 'Hint image (optional)',
interactive = True,
image_mode = 'RGB',
type = 'pil',
optional = True,
source = 'upload'
)
inference_steps_input = gr.Slider(
label = 'Steps',
minimum = 2,
maximum = 100,
value = 20,
step = 1,
interactive = True
)
num_frames_input = gr.Slider(
label = 'Number of frames to generate',
minimum = 1,
maximum = 24,
step = 1,
value = 24,
interactive = True
)
width_input = gr.Slider(
label = 'Width',
minimum = 64,
maximum = 576,
step = 64,
value = 512,
interactive = True
)
height_input = gr.Slider(
label = 'Height',
minimum = 64,
maximum = 576,
step = 64,
value = 512,
interactive = True
)
scheduler_input = gr.Dropdown(
label = 'Noise scheduler',
choices = list(SCHEDULERS.keys()),
value = 'DPM',
interactive = True
)
with gr.Row():
fps_input = gr.Slider(
label = 'Output FPS',
minimum = 1,
maximum = 1000,
step = 1,
value = 12,
interactive = True
)
output_format = gr.Dropdown(
label = 'Output format',
choices = _output_formats,
value = 'gif',
interactive = True
)
with gr.Column():
#will_trigger = gr.Markdown('')
patience = gr.Markdown('**Please be patient. The model might have to compile with current parameters.**')
image_output = gr.Image(
label = 'Output',
value = 'example.gif',
interactive = False
)
tips = gr.Markdown('🤫 *Secret tip*: take the last frame as input for the next generation.')
with gr.Row():
last_frame_output = gr.Image(
label = 'Last frame',
interactive = False
)
first_frame_output = gr.Image(
label = 'First frame',
interactive = False
)
examples_lst = []
for x in _examples:
examples_lst.append([
x['image_output'],
x['prompt'],
x['neg_prompt'],
x['image_input'],
x['cfg'],
x['cfg_image'],
x['seed'],
x['fps'],
x['num_frames'],
x['height'],
x['width'],
x['scheduler'],
x['format']
])
examples = gr.Examples(
examples = examples_lst,
inputs = [
image_output,
prompt_input,
neg_prompt_input,
image_input,
cfg_input,
cfg_image_input,
seed_input,
fps_input,
num_frames_input,
height_input,
width_input,
scheduler_input,
output_format
],
postprocess = False
)
#trigger_inputs = [ image_input, inference_steps_input, height_input, width_input, num_frames_input, scheduler_input ]
#trigger_check_fun = partial(check_if_compiled, message = 'Current parameters need compilation.')
#height_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
#width_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
#num_frames_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
#image_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
#inference_steps_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
#scheduler_input.change(fn = trigger_check_fun, inputs = trigger_inputs, outputs = will_trigger)
submit_button.click(
fn = generate,
inputs = [
prompt_input,
neg_prompt_input,
image_input,
inference_steps_input,
cfg_input,
cfg_image_input,
seed_input,
fps_input,
num_frames_input,
height_input,
width_input,
scheduler_input,
output_format
],
outputs = [ image_output, last_frame_output, first_frame_output ],
postprocess = False
)
#cancel_button.click(fn = lambda: None, cancels = ev)
demo.queue(concurrency_count = 1, max_size = 10)
demo.launch()