File size: 16,039 Bytes
8a09a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import torch
import torch.nn as nn
from typing import Tuple, Union, Optional

try:
    import flash_attn
    if hasattr(flash_attn, '__version__') and int(flash_attn.__version__[0]) == 2:
        from flash_attn.flash_attn_interface import flash_attn_kvpacked_func
        from flash_attn.modules.mha import FlashSelfAttention, FlashCrossAttention
    else:
        from flash_attn.flash_attn_interface import flash_attn_unpadded_kvpacked_func
        from flash_attn.modules.mha import FlashSelfAttention, FlashCrossAttention
except Exception as e:
    print(f'flash_attn import failed: {e}')


def reshape_for_broadcast(freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]], x: torch.Tensor, head_first=False):
    """
    Reshape frequency tensor for broadcasting it with another tensor.

    This function reshapes the frequency tensor to have the same shape as the target tensor 'x'
    for the purpose of broadcasting the frequency tensor during element-wise operations.

    Args:
        freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Frequency tensor to be reshaped.
        x (torch.Tensor): Target tensor for broadcasting compatibility.
        head_first (bool): head dimension first (except batch dim) or not.

    Returns:
        torch.Tensor: Reshaped frequency tensor.

    Raises:
        AssertionError: If the frequency tensor doesn't match the expected shape.
        AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions.
    """
    ndim = x.ndim
    assert 0 <= 1 < ndim

    if isinstance(freqs_cis, tuple):
        # freqs_cis: (cos, sin) in real space
        if head_first:
            assert freqs_cis[0].shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
            shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        else:
            assert freqs_cis[0].shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis[0].shape} does not match x shape {x.shape}'
            shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis[0].view(*shape), freqs_cis[1].view(*shape)
    else:
        # freqs_cis: values in complex space
        if head_first:
            assert freqs_cis.shape == (x.shape[-2], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
            shape = [d if i == ndim - 2 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        else:
            assert freqs_cis.shape == (x.shape[1], x.shape[-1]), f'freqs_cis shape {freqs_cis.shape} does not match x shape {x.shape}'
            shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
        return freqs_cis.view(*shape)


def rotate_half(x):
    x_real, x_imag = x.float().reshape(*x.shape[:-1], -1, 2).unbind(-1)  # [B, S, H, D//2]
    return torch.stack([-x_imag, x_real], dim=-1).flatten(3)


def apply_rotary_emb(
        xq: torch.Tensor,
        xk: Optional[torch.Tensor],
        freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
        head_first: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
    """
    Apply rotary embeddings to input tensors using the given frequency tensor.

    This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided
    frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor
    is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are
    returned as real tensors.

    Args:
        xq (torch.Tensor): Query tensor to apply rotary embeddings. [B, S, H, D]
        xk (torch.Tensor): Key tensor to apply rotary embeddings.   [B, S, H, D]
        freqs_cis (Union[torch.Tensor, Tuple[torch.Tensor]]): Precomputed frequency tensor for complex exponentials.
        head_first (bool): head dimension first (except batch dim) or not.

    Returns:
        Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.

    """
    xk_out = None
    if isinstance(freqs_cis, tuple):
        cos, sin = reshape_for_broadcast(freqs_cis, xq, head_first)    # [S, D]
        cos, sin = cos.to(xq.device), sin.to(xq.device)
        xq_out = (xq.float() * cos + rotate_half(xq.float()) * sin).type_as(xq)
        if xk is not None:
            xk_out = (xk.float() * cos + rotate_half(xk.float()) * sin).type_as(xk)
    else:
        xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))  # [B, S, H, D//2]
        freqs_cis = reshape_for_broadcast(freqs_cis, xq_, head_first).to(xq.device)   # [S, D//2] --> [1, S, 1, D//2]
        xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3).type_as(xq)
        if xk is not None:
            xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))  # [B, S, H, D//2]
            xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3).type_as(xk)

    return xq_out, xk_out


class FlashSelfMHAModified(nn.Module):
    """
    Use QK Normalization.
    """
    def __init__(self,
                 dim,
                 num_heads,
                 qkv_bias=True,
                 qk_norm=False,
                 attn_drop=0.0,
                 proj_drop=0.0,
                 device=None,
                 dtype=None,
                 norm_layer=nn.LayerNorm,
                 ):
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        assert self.dim % num_heads == 0, "self.kdim must be divisible by num_heads"
        self.head_dim = self.dim // num_heads
        assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"

        self.Wqkv = nn.Linear(dim, 3 * dim, bias=qkv_bias, **factory_kwargs)
        # TODO: eps should be 1 / 65530 if using fp16
        self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
        self.inner_attn = FlashSelfAttention(attention_dropout=attn_drop)
        self.out_proj = nn.Linear(dim, dim, bias=qkv_bias, **factory_kwargs)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, freqs_cis_img=None):
        """
        Parameters
        ----------
        x: torch.Tensor
            (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim)
        freqs_cis_img: torch.Tensor
            (batch, hidden_dim // 2), RoPE for image
        """
        b, s, d = x.shape

        qkv = self.Wqkv(x)
        qkv = qkv.view(b, s, 3, self.num_heads, self.head_dim)  # [b, s, 3, h, d]
        q, k, v = qkv.unbind(dim=2) # [b, s, h, d]
        q = self.q_norm(q).half()   # [b, s, h, d]
        k = self.k_norm(k).half()

        # Apply RoPE if needed
        if freqs_cis_img is not None:
            qq, kk = apply_rotary_emb(q, k, freqs_cis_img)
            assert qq.shape == q.shape and kk.shape == k.shape, f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}'
            q, k = qq, kk

        qkv = torch.stack([q, k, v], dim=2)     # [b, s, 3, h, d]
        context = self.inner_attn(qkv)
        out = self.out_proj(context.view(b, s, d))
        out = self.proj_drop(out)

        out_tuple = (out,)

        return out_tuple


class FlashCrossMHAModified(nn.Module):
    """
    Use QK Normalization.
    """
    def __init__(self,
                 qdim,
                 kdim,
                 num_heads,
                 qkv_bias=True,
                 qk_norm=False,
                 attn_drop=0.0,
                 proj_drop=0.0,
                 device=None,
                 dtype=None,
                 norm_layer=nn.LayerNorm,
                 ):
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.qdim = qdim
        self.kdim = kdim
        self.num_heads = num_heads
        assert self.qdim % num_heads == 0, "self.qdim must be divisible by num_heads"
        self.head_dim = self.qdim // num_heads
        assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"

        self.scale = self.head_dim ** -0.5

        self.q_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
        self.kv_proj = nn.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs)

        # TODO: eps should be 1 / 65530 if using fp16
        self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()

        self.inner_attn = FlashCrossAttention(attention_dropout=attn_drop)
        self.out_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, y, freqs_cis_img=None):
        """
        Parameters
        ----------
        x: torch.Tensor
            (batch, seqlen1, hidden_dim) (where hidden_dim = num_heads * head_dim)
        y: torch.Tensor
            (batch, seqlen2, hidden_dim2)
        freqs_cis_img: torch.Tensor
            (batch, hidden_dim // num_heads), RoPE for image
        """
        b, s1, _ = x.shape     # [b, s1, D]
        _, s2, _ = y.shape     # [b, s2, 1024]

        q = self.q_proj(x).view(b, s1, self.num_heads, self.head_dim)       # [b, s1, h, d]
        kv = self.kv_proj(y).view(b, s2, 2, self.num_heads, self.head_dim)  # [b, s2, 2, h, d]
        k, v = kv.unbind(dim=2)                 # [b, s2, h, d]
        q = self.q_norm(q).half()               # [b, s1, h, d]
        k = self.k_norm(k).half()               # [b, s2, h, d]

        # Apply RoPE if needed
        if freqs_cis_img is not None:
            qq, _ = apply_rotary_emb(q, None, freqs_cis_img)
            assert qq.shape == q.shape, f'qq: {qq.shape}, q: {q.shape}'
            q = qq                              # [b, s1, h, d]
        kv = torch.stack([k, v], dim=2)         # [b, s1, 2, h, d]
        context = self.inner_attn(q, kv)        # [b, s1, h, d]
        context = context.view(b, s1, -1)       # [b, s1, D]

        out = self.out_proj(context)
        out = self.proj_drop(out)

        out_tuple = (out,)

        return out_tuple


class CrossAttention(nn.Module):
    """
    Use QK Normalization.
    """
    def __init__(self,
                 qdim,
                 kdim,
                 num_heads,
                 qkv_bias=True,
                 qk_norm=False,
                 attn_drop=0.0,
                 proj_drop=0.0,
                 device=None,
                 dtype=None,
                 norm_layer=nn.LayerNorm,
                 ):
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.qdim = qdim
        self.kdim = kdim
        self.num_heads = num_heads
        assert self.qdim % num_heads == 0, "self.qdim must be divisible by num_heads"
        self.head_dim = self.qdim // num_heads
        assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
        self.scale = self.head_dim ** -0.5

        self.q_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
        self.kv_proj = nn.Linear(kdim, 2 * qdim, bias=qkv_bias, **factory_kwargs)

        # TODO: eps should be 1 / 65530 if using fp16
        self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.out_proj = nn.Linear(qdim, qdim, bias=qkv_bias, **factory_kwargs)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, y, freqs_cis_img=None):
        """
        Parameters
        ----------
        x: torch.Tensor
            (batch, seqlen1, hidden_dim) (where hidden_dim = num heads * head dim)
        y: torch.Tensor
            (batch, seqlen2, hidden_dim2)
        freqs_cis_img: torch.Tensor
            (batch, hidden_dim // 2), RoPE for image
        """
        b, s1, c = x.shape     # [b, s1, D]
        _, s2, c = y.shape     # [b, s2, 1024]

        q = self.q_proj(x).view(b, s1, self.num_heads, self.head_dim)   # [b, s1, h, d]
        kv = self.kv_proj(y).view(b, s2, 2, self.num_heads, self.head_dim)    # [b, s2, 2, h, d]
        k, v = kv.unbind(dim=2) # [b, s, h, d]
        q = self.q_norm(q)
        k = self.k_norm(k)

        # Apply RoPE if needed
        if freqs_cis_img is not None:
            qq, _ = apply_rotary_emb(q, None, freqs_cis_img)
            assert qq.shape == q.shape, f'qq: {qq.shape}, q: {q.shape}'
            q = qq

        q = q * self.scale
        q = q.transpose(-2, -3).contiguous()        # q ->  B, L1, H, C - B, H, L1, C
        k = k.permute(0, 2, 3, 1).contiguous()      # k ->  B, L2, H, C - B, H, C, L2
        attn = q @ k                                # attn -> B, H, L1, L2
        attn = attn.softmax(dim=-1)                 # attn -> B, H, L1, L2
        attn = self.attn_drop(attn)
        x = attn @ v.transpose(-2, -3)              # v -> B, L2, H, C - B, H, L2, C    x-> B, H, L1, C
        context = x.transpose(1, 2)                 # context -> B, H, L1, C - B, L1, H, C

        context = context.contiguous().view(b, s1, -1)

        out = self.out_proj(context)  # context.reshape - B, L1, -1
        out = self.proj_drop(out)

        out_tuple = (out,)

        return out_tuple


class Attention(nn.Module):
    """
    We rename some layer names to align with flash attention
    """
    def __init__(self, dim, num_heads, qkv_bias=True, qk_norm=False, attn_drop=0., proj_drop=0.,
                 norm_layer=nn.LayerNorm,
                 ):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        assert self.dim % num_heads == 0, 'dim should be divisible by num_heads'
        self.head_dim = self.dim // num_heads
        # This assertion is aligned with flash attention
        assert self.head_dim % 8 == 0 and self.head_dim <= 128, "Only support head_dim <= 128 and divisible by 8"
        self.scale = self.head_dim ** -0.5

        # qkv --> Wqkv
        self.Wqkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        # TODO: eps should be 1 / 65530 if using fp16
        self.q_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
        self.k_norm = norm_layer(self.head_dim, elementwise_affine=True, eps=1e-6) if qk_norm else nn.Identity()
        self.attn_drop = nn.Dropout(attn_drop)
        self.out_proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, freqs_cis_img=None):
        B, N, C = x.shape
        qkv = self.Wqkv(x).reshape(B, N, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)   # [3, b, h, s, d]
        q, k, v = qkv.unbind(0)     # [b, h, s, d]
        q = self.q_norm(q)          # [b, h, s, d]
        k = self.k_norm(k)          # [b, h, s, d]

        # Apply RoPE if needed
        if freqs_cis_img is not None:
            qq, kk = apply_rotary_emb(q, k, freqs_cis_img, head_first=True)
            assert qq.shape == q.shape and kk.shape == k.shape, \
                f'qq: {qq.shape}, q: {q.shape}, kk: {kk.shape}, k: {k.shape}'
            q, k = qq, kk

        q = q * self.scale
        attn = q @ k.transpose(-2, -1)              # [b, h, s, d] @ [b, h, d, s]
        attn = attn.softmax(dim=-1)                 # [b, h, s, s]
        attn = self.attn_drop(attn)
        x = attn @ v                                # [b, h, s, d]

        x = x.transpose(1, 2).reshape(B, N, C)      # [b, s, h, d]
        x = self.out_proj(x)
        x = self.proj_drop(x)

        out_tuple = (x,)

        return out_tuple