Spaces:
Runtime error
Runtime error
File size: 3,436 Bytes
8a09a62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
import torch
import torch.nn as nn
from transformers import AutoTokenizer, T5EncoderModel, T5ForConditionalGeneration
class MT5Embedder(nn.Module):
available_models = ["t5-v1_1-xxl"]
def __init__(
self,
model_dir="t5-v1_1-xxl",
model_kwargs=None,
torch_dtype=None,
use_tokenizer_only=False,
conditional_generation=False,
max_length=128,
):
super().__init__()
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.torch_dtype = torch_dtype or torch.bfloat16
self.max_length = max_length
if model_kwargs is None:
model_kwargs = {
# "low_cpu_mem_usage": True,
"torch_dtype": self.torch_dtype,
}
model_kwargs["device_map"] = {"shared": self.device, "encoder": self.device}
self.tokenizer = AutoTokenizer.from_pretrained(model_dir)
if use_tokenizer_only:
return
if conditional_generation:
self.model = None
self.generation_model = T5ForConditionalGeneration.from_pretrained(
model_dir
)
return
self.model = T5EncoderModel.from_pretrained(model_dir, **model_kwargs).eval().to(self.torch_dtype)
def get_tokens_and_mask(self, texts):
text_tokens_and_mask = self.tokenizer(
texts,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
tokens = text_tokens_and_mask["input_ids"][0]
mask = text_tokens_and_mask["attention_mask"][0]
# tokens = torch.tensor(tokens).clone().detach()
# mask = torch.tensor(mask, dtype=torch.bool).clone().detach()
return tokens, mask
def get_text_embeddings(self, texts, attention_mask=True, layer_index=-1):
text_tokens_and_mask = self.tokenizer(
texts,
max_length=self.max_length,
padding="max_length",
truncation=True,
return_attention_mask=True,
add_special_tokens=True,
return_tensors="pt",
)
with torch.no_grad():
outputs = self.model(
input_ids=text_tokens_and_mask["input_ids"].to(self.device),
attention_mask=text_tokens_and_mask["attention_mask"].to(self.device)
if attention_mask
else None,
output_hidden_states=True,
)
text_encoder_embs = outputs["hidden_states"][layer_index].detach()
return text_encoder_embs, text_tokens_and_mask["attention_mask"].to(self.device)
@torch.no_grad()
def __call__(self, tokens, attention_mask, layer_index=-1):
with torch.cuda.amp.autocast():
outputs = self.model(
input_ids=tokens,
attention_mask=attention_mask,
output_hidden_states=True,
)
z = outputs.hidden_states[layer_index].detach()
return z
def general(self, text: str):
# input_ids = input_ids = torch.tensor([list(text.encode("utf-8"))]) + num_special_tokens
input_ids = self.tokenizer(text, max_length=128).input_ids
print(input_ids)
outputs = self.generation_model(input_ids)
return outputs |