File size: 5,319 Bytes
8a09a62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import argparse
import torch
import sys
import os
# 添加当前命令行运行的目录到 sys.path
sys.path.append(os.getcwd()+"/dialoggen")


from llava.constants import (
    IMAGE_TOKEN_INDEX,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
    IMAGE_PLACEHOLDER,
)
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.builder import load_pretrained_model
from llava.utils import disable_torch_init
from llava.mm_utils import (
    process_images,
    tokenizer_image_token,
    get_model_name_from_path,
)

import requests
from PIL import Image
from io import BytesIO
import re


def image_parser(image_file, sep=','):
    out = image_file.split(sep)
    return out


def load_image(image_file):
    if image_file.startswith("http") or image_file.startswith("https"):
        response = requests.get(image_file)
        image = Image.open(BytesIO(response.content)).convert("RGB")
    else:
        image = Image.open(image_file).convert("RGB")
    return image


def load_images(image_files):
    out = []
    for image_file in image_files:
        image = load_image(image_file)
        out.append(image)
    return out


def init_dialoggen_model(model_path, model_base=None):
    model_name = get_model_name_from_path(model_path)
    tokenizer, model, image_processor, context_len = load_pretrained_model(
        model_path, model_base, model_name, llava_type_model=True)
    return {"tokenizer": tokenizer,
            "model": model,
            "image_processor": image_processor}


def eval_model(models,
               query='详细描述一下这张图片',
               image_file=None,
               sep=',',
               temperature=0.2,
               top_p=None,
               num_beams=1,
               max_new_tokens=512,
               ):
    # Model
    disable_torch_init()

    qs = query
    image_token_se = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN
    if IMAGE_PLACEHOLDER in qs:
        if models["model"].config.mm_use_im_start_end:
            qs = re.sub(IMAGE_PLACEHOLDER, image_token_se, qs)
        else:
            qs = re.sub(IMAGE_PLACEHOLDER, DEFAULT_IMAGE_TOKEN, qs)
    else:
        if models["model"].config.mm_use_im_start_end:
            qs = image_token_se + "\n" + qs
        else:
            qs = DEFAULT_IMAGE_TOKEN + "\n" + qs

    conv = conv_templates['llava_v1'].copy()
    conv.append_message(conv.roles[0], qs)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    if image_file is not None:
        image_files = image_parser(image_file, sep=sep)
        images = load_images(image_files)
        image_sizes = [x.size for x in images]
        images_tensor = process_images(
            images,
            models["image_processor"],
            models["model"].config
        ).to(models["model"].device, dtype=torch.float16)
    else:
        # fomatted input as training data
        image_sizes = [(1024, 1024)]
        images_tensor = torch.zeros(1, 5, 3, models["image_processor"].crop_size["height"], models["image_processor"].crop_size["width"])
        images_tensor = images_tensor.to(models["model"].device, dtype=torch.float16)

    input_ids = (
        tokenizer_image_token(prompt, models["tokenizer"], IMAGE_TOKEN_INDEX, return_tensors="pt")
        .unsqueeze(0)
        .cuda()
    )
    with torch.inference_mode():
        output_ids = models["model"].generate(
            input_ids,
            images=images_tensor,
            image_sizes=image_sizes,
            do_sample=True if temperature > 0 else False,
            temperature=temperature,
            top_p=top_p,
            num_beams=num_beams,
            max_new_tokens=max_new_tokens,
            use_cache=True,
        )

    outputs = models["tokenizer"].batch_decode(output_ids, skip_special_tokens=True)[0].strip()
    return outputs


def remove_prefix(text):
    if text.startswith("<画图>"):
        return text[len("<画图>"):], True
    elif text.startswith("对不起"):
        # 拒绝画图
        return "", False
    else:
        return text, True


class DialogGen(object):
    def __init__(self, model_path):
        self.models = init_dialoggen_model(model_path)
        self.query_template = "请先判断用户的意图,若为画图则在输出前加入<画图>:{}"

    def __call__(self, prompt):
        enhanced_prompt = eval_model(
            models=self.models,
            query=self.query_template.format(prompt),
            image_file=None,
        )

        enhanced_prompt, compliance = remove_prefix(enhanced_prompt)
        if not compliance:
            return False, ""
        return True, enhanced_prompt


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--model_path', type=str, default='./ckpts/dialoggen')
    parser.add_argument('--prompt', type=str, default='画一只小猫')
    parser.add_argument('--image_file', type=str, default=None) # 'images/demo1.jpeg'
    args = parser.parse_args()

    query = f"请先判断用户的意图,若为画图则在输出前加入<画图>:{args.prompt}"

    models = init_dialoggen_model(args.model_path)

    res = eval_model(models,
        query=query,
        image_file=args.image_file,
    )
    print(res)