Caption-Anything / tools.py
ttengwang
fix bugs of example images and api keys
5c74464
raw
history blame
12.2 kB
import cv2
import torch
import numpy as np
from PIL import Image
import copy
import time
def colormap(rgb=True):
color_list = np.array(
[
0.000, 0.000, 0.000,
1.000, 1.000, 1.000,
1.000, 0.498, 0.313,
0.392, 0.581, 0.929,
0.000, 0.447, 0.741,
0.850, 0.325, 0.098,
0.929, 0.694, 0.125,
0.494, 0.184, 0.556,
0.466, 0.674, 0.188,
0.301, 0.745, 0.933,
0.635, 0.078, 0.184,
0.300, 0.300, 0.300,
0.600, 0.600, 0.600,
1.000, 0.000, 0.000,
1.000, 0.500, 0.000,
0.749, 0.749, 0.000,
0.000, 1.000, 0.000,
0.000, 0.000, 1.000,
0.667, 0.000, 1.000,
0.333, 0.333, 0.000,
0.333, 0.667, 0.000,
0.333, 1.000, 0.000,
0.667, 0.333, 0.000,
0.667, 0.667, 0.000,
0.667, 1.000, 0.000,
1.000, 0.333, 0.000,
1.000, 0.667, 0.000,
1.000, 1.000, 0.000,
0.000, 0.333, 0.500,
0.000, 0.667, 0.500,
0.000, 1.000, 0.500,
0.333, 0.000, 0.500,
0.333, 0.333, 0.500,
0.333, 0.667, 0.500,
0.333, 1.000, 0.500,
0.667, 0.000, 0.500,
0.667, 0.333, 0.500,
0.667, 0.667, 0.500,
0.667, 1.000, 0.500,
1.000, 0.000, 0.500,
1.000, 0.333, 0.500,
1.000, 0.667, 0.500,
1.000, 1.000, 0.500,
0.000, 0.333, 1.000,
0.000, 0.667, 1.000,
0.000, 1.000, 1.000,
0.333, 0.000, 1.000,
0.333, 0.333, 1.000,
0.333, 0.667, 1.000,
0.333, 1.000, 1.000,
0.667, 0.000, 1.000,
0.667, 0.333, 1.000,
0.667, 0.667, 1.000,
0.667, 1.000, 1.000,
1.000, 0.000, 1.000,
1.000, 0.333, 1.000,
1.000, 0.667, 1.000,
0.167, 0.000, 0.000,
0.333, 0.000, 0.000,
0.500, 0.000, 0.000,
0.667, 0.000, 0.000,
0.833, 0.000, 0.000,
1.000, 0.000, 0.000,
0.000, 0.167, 0.000,
0.000, 0.333, 0.000,
0.000, 0.500, 0.000,
0.000, 0.667, 0.000,
0.000, 0.833, 0.000,
0.000, 1.000, 0.000,
0.000, 0.000, 0.167,
0.000, 0.000, 0.333,
0.000, 0.000, 0.500,
0.000, 0.000, 0.667,
0.000, 0.000, 0.833,
0.000, 0.000, 1.000,
0.143, 0.143, 0.143,
0.286, 0.286, 0.286,
0.429, 0.429, 0.429,
0.571, 0.571, 0.571,
0.714, 0.714, 0.714,
0.857, 0.857, 0.857
]
).astype(np.float32)
color_list = color_list.reshape((-1, 3)) * 255
if not rgb:
color_list = color_list[:, ::-1]
return color_list
color_list = colormap()
color_list = color_list.astype('uint8').tolist()
def vis_add_mask(image, mask, color, alpha, kernel_size):
color = np.array(color)
mask = mask.astype('float').copy()
mask = (cv2.GaussianBlur(mask, (kernel_size, kernel_size), kernel_size) / 255.) * (alpha)
for i in range(3):
image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)
return image
def vis_add_mask_wo_blur(image, mask, color, alpha):
color = np.array(color)
mask = mask.astype('float').copy()
for i in range(3):
image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)
return image
def vis_add_mask_wo_gaussian(image, background_mask, contour_mask, background_color, contour_color, background_alpha, contour_alpha):
background_color = np.array(background_color)
contour_color = np.array(contour_color)
# background_mask = 1 - background_mask
# contour_mask = 1 - contour_mask
for i in range(3):
image[:, :, i] = image[:, :, i] * (1-background_alpha+background_mask*background_alpha) \
+ background_color[i] * (background_alpha-background_mask*background_alpha)
image[:, :, i] = image[:, :, i] * (1-contour_alpha+contour_mask*contour_alpha) \
+ contour_color[i] * (contour_alpha-contour_mask*contour_alpha)
return image.astype('uint8')
def mask_painter(input_image, input_mask, background_alpha=0.7, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1):
"""
Input:
input_image: numpy array
input_mask: numpy array
background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
background_blur_radius: radius of background blur, must be odd number
contour_width: width of mask contour, must be odd number
contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted
Output:
painted_image: numpy array
"""
assert input_image.shape[:2] == input_mask.shape, 'different shape'
assert background_blur_radius % 2 * contour_width % 2 > 0, 'background_blur_radius and contour_width must be ODD'
# 0: background, 1: foreground
input_mask[input_mask>0] = 255
# mask background
painted_image = vis_add_mask(input_image, input_mask, color_list[0], background_alpha, background_blur_radius) # black for background
# mask contour
contour_mask = input_mask.copy()
contour_mask = cv2.Canny(contour_mask, 100, 200) # contour extraction
# widden contour
kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (contour_width, contour_width))
contour_mask = cv2.dilate(contour_mask, kernel)
painted_image = vis_add_mask(painted_image, 255-contour_mask, color_list[contour_color], contour_alpha, contour_width)
# painted_image = background_dist_map
return painted_image
def mask_generator_00(mask, background_radius, contour_radius):
# no background width when '00'
# distance map
dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
dist_map = dist_transform_fore - dist_transform_back
# ...:::!!!:::...
contour_radius += 2
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
contour_mask = contour_mask / np.max(contour_mask)
contour_mask[contour_mask>0.5] = 1.
return mask, contour_mask
def mask_generator_01(mask, background_radius, contour_radius):
# no background width when '00'
# distance map
dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
dist_map = dist_transform_fore - dist_transform_back
# ...:::!!!:::...
contour_radius += 2
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
contour_mask = contour_mask / np.max(contour_mask)
return mask, contour_mask
def mask_generator_10(mask, background_radius, contour_radius):
# distance map
dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
dist_map = dist_transform_fore - dist_transform_back
# .....:::::!!!!!
background_mask = np.clip(dist_map, -background_radius, background_radius)
background_mask = (background_mask - np.min(background_mask))
background_mask = background_mask / np.max(background_mask)
# ...:::!!!:::...
contour_radius += 2
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
contour_mask = contour_mask / np.max(contour_mask)
contour_mask[contour_mask>0.5] = 1.
return background_mask, contour_mask
def mask_generator_11(mask, background_radius, contour_radius):
# distance map
dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
dist_map = dist_transform_fore - dist_transform_back
# .....:::::!!!!!
background_mask = np.clip(dist_map, -background_radius, background_radius)
background_mask = (background_mask - np.min(background_mask))
background_mask = background_mask / np.max(background_mask)
# ...:::!!!:::...
contour_radius += 2
contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
contour_mask = contour_mask / np.max(contour_mask)
return background_mask, contour_mask
def mask_painter_wo_gaussian(input_image, input_mask, background_alpha=0.5, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1, mode='11'):
"""
Input:
input_image: numpy array
input_mask: numpy array
background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
background_blur_radius: radius of background blur, must be odd number
contour_width: width of mask contour, must be odd number
contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted
mode: painting mode, '00', no blur, '01' only blur contour, '10' only blur background, '11' blur both
Output:
painted_image: numpy array
"""
assert input_image.shape[:2] == input_mask.shape, 'different shape'
assert background_blur_radius % 2 * contour_width % 2 > 0, 'background_blur_radius and contour_width must be ODD'
assert mode in ['00', '01', '10', '11'], 'mode should be 00, 01, 10, or 11'
# downsample input image and mask
width, height = input_image.shape[0], input_image.shape[1]
res = 1024
ratio = min(1.0 * res / max(width, height), 1.0)
input_image = cv2.resize(input_image, (int(height*ratio), int(width*ratio)))
input_mask = cv2.resize(input_mask, (int(height*ratio), int(width*ratio)))
# 0: background, 1: foreground
msk = np.clip(input_mask, 0, 1)
# generate masks for background and contour pixels
background_radius = (background_blur_radius - 1) // 2
contour_radius = (contour_width - 1) // 2
generator_dict = {'00':mask_generator_00, '01':mask_generator_01, '10':mask_generator_10, '11':mask_generator_11}
background_mask, contour_mask = generator_dict[mode](msk, background_radius, contour_radius)
# paint
painted_image = vis_add_mask_wo_gaussian\
(input_image, background_mask, contour_mask, color_list[0], color_list[contour_color], background_alpha, contour_alpha) # black for background
return painted_image
if __name__ == '__main__':
background_alpha = 0.7 # transparency of background 1: all black, 0: do nothing
background_blur_radius = 31 # radius of background blur, must be odd number
contour_width = 11 # contour width, must be odd number
contour_color = 3 # id in color map, 0: black, 1: white, >1: others
contour_alpha = 1 # transparency of background, 0: no contour highlighted
# load input image and mask
input_image = np.array(Image.open('./test_img/painter_input_image.jpg').convert('RGB'))
input_mask = np.array(Image.open('./test_img/painter_input_mask.jpg').convert('P'))
# paint
overall_time_1 = 0
overall_time_2 = 0
overall_time_3 = 0
overall_time_4 = 0
overall_time_5 = 0
for i in range(50):
t2 = time.time()
painted_image_00 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='00')
e2 = time.time()
t3 = time.time()
painted_image_10 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='10')
e3 = time.time()
t1 = time.time()
painted_image = mask_painter(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha)
e1 = time.time()
t4 = time.time()
painted_image_01 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='01')
e4 = time.time()
t5 = time.time()
painted_image_11 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='11')
e5 = time.time()
overall_time_1 += (e1 - t1)
overall_time_2 += (e2 - t2)
overall_time_3 += (e3 - t3)
overall_time_4 += (e4 - t4)
overall_time_5 += (e5 - t5)
print(f'average time w gaussian: {overall_time_1/50}')
print(f'average time w/o gaussian00: {overall_time_2/50}')
print(f'average time w/o gaussian10: {overall_time_3/50}')
print(f'average time w/o gaussian01: {overall_time_4/50}')
print(f'average time w/o gaussian11: {overall_time_5/50}')
# save
painted_image_00 = Image.fromarray(painted_image_00)
painted_image_00.save('./test_img/painter_output_image_00.png')
painted_image_10 = Image.fromarray(painted_image_10)
painted_image_10.save('./test_img/painter_output_image_10.png')
painted_image_01 = Image.fromarray(painted_image_01)
painted_image_01.save('./test_img/painter_output_image_01.png')
painted_image_11 = Image.fromarray(painted_image_11)
painted_image_11.save('./test_img/painter_output_image_11.png')