ttengwang
support "segment everything in a paragraph"
ccb14a3
import torch
from PIL import Image, ImageDraw, ImageOps
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering
import json
import pdb
import cv2
import numpy as np
from typing import Any, Union, List
import time
import clip
from caption_anything.utils.utils import load_image
def boundary(inputs):
col = inputs.shape[1]
inputs = inputs.reshape(-1)
lens = len(inputs)
start = np.argmax(inputs)
end = lens - 1 - np.argmax(np.flip(inputs))
top = start // col
bottom = end // col
return top, bottom
def new_seg_to_box(seg_mask: Union[np.ndarray, Image.Image, str]):
if type(seg_mask) == str:
seg_mask = Image.open(seg_mask)
elif type(seg_mask) == np.ndarray:
seg_mask = Image.fromarray(seg_mask)
seg_mask = np.array(seg_mask) > 0
size = max(seg_mask.shape[0], seg_mask.shape[1])
top, bottom = boundary(seg_mask)
left, right = boundary(seg_mask.T)
return [left / size, top / size, right / size, bottom / size]
def seg_to_box(seg_mask: Union[np.ndarray, Image.Image, str]):
if type(seg_mask) == str:
seg_mask = cv2.imread(seg_mask, cv2.IMREAD_GRAYSCALE)
_, seg_mask = cv2.threshold(seg_mask, 127, 255, 0)
elif type(seg_mask) == np.ndarray:
assert seg_mask.ndim == 2 # only support single-channel segmentation mask
seg_mask = seg_mask.astype('uint8')
if seg_mask.dtype == 'bool':
seg_mask = seg_mask * 255
contours, hierarchy = cv2.findContours(seg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
contours = np.concatenate(contours, axis=0)
rect = cv2.minAreaRect(contours)
box = cv2.boxPoints(rect)
if rect[-1] >= 45:
newstart = box.argmin(axis=0)[1] # leftmost
else:
newstart = box.argmax(axis=0)[0] # topmost
box = np.concatenate([box[newstart:], box[:newstart]], axis=0)
box = np.int0(box)
return box
def get_w_h(rect_points):
w = np.linalg.norm(rect_points[0] - rect_points[1], ord=2).astype('int')
h = np.linalg.norm(rect_points[0] - rect_points[3], ord=2).astype('int')
return w, h
def cut_box(img, rect_points):
w, h = get_w_h(rect_points)
dst_pts = np.array([[h, 0], [h, w], [0, w], [0, 0], ], dtype="float32")
transform = cv2.getPerspectiveTransform(rect_points.astype("float32"), dst_pts)
cropped_img = cv2.warpPerspective(img, transform, (h, w))
return cropped_img
class BaseCaptioner:
def __init__(self, device, enable_filter=False):
print(f"Initializing ImageCaptioning to {device}")
self.device = device
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
self.processor = None
self.model = None
self.enable_filter = enable_filter
if enable_filter:
self.filter, self.preprocess = clip.load('ViT-B/32', device)
@torch.no_grad()
def filter_caption(self, image: Union[np.ndarray, Image.Image, str], caption: str, reference_caption: List[str]=[]):
image = load_image(image, return_type='pil')
image = self.preprocess(image).unsqueeze(0).to(self.device) # (1, 3, 224, 224)
captions = [caption]
if len(reference_caption):
captions.extend(reference_caption)
text = clip.tokenize(captions).to(self.device) # (>1, 77)
image_features = self.filter.encode_image(image) # (1, 512)
text_features = self.filter.encode_text(text) # # (>1, 512)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
if len(reference_caption):
similarity = torch.matmul(image_features, text_features.transpose(1, 0)) / 0.07
similarity = similarity.softmax(dim=1)[0, 0].item()
else:
similarity = torch.matmul(image_features, text_features.transpose(1, 0)).item()
print(f'Clip score of the caption is {similarity}')
return similarity
def inference(self, image: Union[np.ndarray, Image.Image, str], filter: bool = False):
raise NotImplementedError()
def inference_with_reduced_tokens(self, image: Union[np.ndarray, Image.Image, str], seg_mask, filter: bool = False):
raise NotImplementedError()
def inference_box(self, image: Union[np.ndarray, Image.Image, str], box: Union[list, np.ndarray], filter=False, verbose=False, caption_args={}):
image = load_image(image, return_type="pil")
if np.array(box).size == 4:
# [x0, y0, x1, y1], where (x0, y0), (x1, y1) represent top-left and bottom-right corners
size = max(image.width, image.height)
x1, y1, x2, y2 = box
image_crop = np.array(image.crop((x1 * size, y1 * size, x2 * size, y2 * size)))
elif np.array(box).size == 8: # four corners of an irregular rectangle
image_crop = cut_box(np.array(image), box)
crop_save_path = None
if verbose:
crop_save_path = f'result/crop_{time.time()}.png'
Image.fromarray(image_crop).save(crop_save_path)
print(f'croped image saved in {crop_save_path}')
caption = self.inference(image_crop, filter, caption_args)
caption.update({'crop_save_path': crop_save_path})
return caption
def inference_seg(self,
image: Union[np.ndarray, str],
seg_mask: Union[np.ndarray, Image.Image, str] = None,
crop_mode="w_bg",
filter=False,
disable_regular_box=False,
verbose=False,
caption_args={}):
if seg_mask is None:
seg_mask = np.ones(image.size).astype(bool)
image = load_image(image, return_type="pil")
seg_mask = load_image(seg_mask, return_type="pil")
seg_mask = seg_mask.resize(image.size)
seg_mask = np.array(seg_mask) > 0
if crop_mode == "wo_bg":
image = np.array(image) * seg_mask[:, :, np.newaxis] + (1 - seg_mask[:, :, np.newaxis]) * 255
image = np.uint8(image)
else:
image = np.array(image)
if disable_regular_box:
min_area_box = seg_to_box(seg_mask)
else:
min_area_box = new_seg_to_box(seg_mask)
return self.inference_box(image, min_area_box, filter, verbose, caption_args)
def generate_seg_cropped_image(self,
image: Union[np.ndarray, str],
seg_mask: Union[np.ndarray, Image.Image, str],
crop_mode="w_bg",
disable_regular_box=False):
image = load_image(image, return_type="pil")
seg_mask = load_image(seg_mask, return_type="pil")
seg_mask = seg_mask.resize(image.size)
seg_mask = np.array(seg_mask) > 0
if crop_mode == "wo_bg":
image = np.array(image) * seg_mask[:, :, np.newaxis] + (1 - seg_mask[:, :, np.newaxis]) * 255
else:
image = np.array(image)
if disable_regular_box:
box = seg_to_box(seg_mask)
else:
box = new_seg_to_box(seg_mask)
if np.array(box).size == 4:
# [x0, y0, x1, y1], where (x0, y0), (x1, y1) represent top-left and bottom-right corners
size = max(image.shape[0], image.shape[1])
x1, y1, x2, y2 = box
image_crop = np.array(image.crop((x1 * size, y1 * size, x2 * size, y2 * size)))
elif np.array(box).size == 8: # four corners of an irregular rectangle
image_crop = cut_box(np.array(image), box)
crop_save_path = f'result/crop_{time.time()}.png'
Image.fromarray(image_crop).save(crop_save_path)
print(f'croped image saved in {crop_save_path}')
return crop_save_path
if __name__ == '__main__':
model = BaseCaptioner(device='cuda:0')
image_path = 'test_images/img2.jpg'
seg_mask = np.zeros((15, 15))
seg_mask[5:10, 5:10] = 1
seg_mask = 'image/SAM/img10.jpg.raw_mask.png'
print(model.inference_seg(image_path, seg_mask))