from io import BytesIO import string import gradio as gr import requests from caption_anything import CaptionAnything import torch import json import sys import argparse from caption_anything import parse_augment import os # download sam checkpoint if not downloaded def download_checkpoint(url, folder, filename): os.makedirs(folder, exist_ok=True) filepath = os.path.join(folder, filename) if not os.path.exists(filepath): response = requests.get(url, stream=True) with open(filepath, "wb") as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) return filepath checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth" folder = "segmenter" filename = "sam_vit_h_4b8939.pth" title = """

Caption-Anything

""" description = """Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them.
Code: GitHub repo: """ examples = [ ["test_img/img2.jpg", "[[1000, 700, 1]]"] ] args = parse_augment() def get_prompt(chat_input, click_state): points = click_state[0] labels = click_state[1] inputs = json.loads(chat_input) for input in inputs: points.append(input[:2]) labels.append(input[2]) prompt = { "prompt_type":["click"], "input_point":points, "input_label":labels, "multimask_output":"True", } return prompt def inference_seg_cap(image_input, chat_input, language, sentiment, factuality, length, state, click_state): controls = {'length': length, 'sentiment': sentiment, 'factuality': factuality, 'language': language} prompt = get_prompt(chat_input, click_state) print('prompt: ', prompt, 'controls: ', controls) out = model.inference(image_input, prompt, controls) state = state + [(None, "Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]))] for k, v in out['generated_captions'].items(): state = state + [(f'{k}: {v}', None)] click_state[2].append(out['generated_captions']['raw_caption']) image_output_mask = out['mask_save_path'] image_output_crop = out['crop_save_path'] return state, state, click_state, image_output_mask, image_output_crop def upload_callback(image_input, state): state = state + [('Image size: ' + str(image_input.size), None)] return state # get coordinate in format [[x,y,positive/negative]] def get_select_coords(image_input, point_prompt, language, sentiment, factuality, length, state, click_state, evt: gr.SelectData): print("point_prompt: ", point_prompt) if point_prompt == 'Positive Point': coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1])) else: coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1])) return (coordinate,) + inference_seg_cap(image_input, coordinate, language, sentiment, factuality, length, state, click_state) def chat_with_points(chat_input, click_state, state): points, labels, captions = click_state # point_chat_prompt = "I want you act as a chat bot in terms of image. I will give you some points (w, h) in the image and tell you what happed on the point in natural language. Note that (0, 0) refers to the top-left corner of the image, w refers to the width and h refers the height. You should chat with me based on the fact in the image instead of imagination. Now I tell you the points with their visual description:\n{points_with_caps}\n. Now begin chatting! Human: {chat_input}\nAI: " # "The image is of width {width} and height {height}." point_chat_prompt = "a) Revised prompt: I am an AI trained to chat with you about an image based on specific points (w, h) you provide, along with their visual descriptions. Please note that (0, 0) refers to the top-left corner of the image, w refers to the width, and h refers to the height. Here are the points and their descriptions you've given me: {points_with_caps}. Now, let's chat! Human: {chat_input} AI:" prev_visual_context = "" pos_points = [f"{points[i][0]}, {points[i][1]}" for i in range(len(points)) if labels[i] == 1] prev_visual_context = ', '.join(pos_points) + captions[-1] + '\n' chat_prompt = point_chat_prompt.format(**{"points_with_caps": prev_visual_context, "chat_input": chat_input}) response = model.text_refiner.llm(chat_prompt) state = state + [(chat_input, response)] return state, state def init_openai_api_key(api_key): # os.environ['OPENAI_API_KEY'] = api_key global model model = CaptionAnything(args, api_key) css=''' #image_upload{min-height:200px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 200px} ''' with gr.Blocks(css=css) as iface: state = gr.State([]) click_state = gr.State([[],[],[]]) caption_state = gr.State([[]]) gr.Markdown(title) gr.Markdown(description) with gr.Column(): openai_api_key = gr.Textbox( placeholder="Input your openAI API key and press Enter", show_label=False, lines=1, type="password", ) openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key]) with gr.Row(): with gr.Column(scale=0.7): image_input = gr.Image(type="pil", interactive=True, label="Image", elem_id="image_upload").style(height=260,scale=1.0) with gr.Row(scale=0.7): point_prompt = gr.Radio( choices=["Positive Point", "Negative Point"], value="Positive Point", label="Points", interactive=True, ) # with gr.Row(): language = gr.Radio( choices=["English", "Chinese", "French", "Spanish", "Arabic", "Portuguese","Cantonese"], value="English", label="Language", interactive=True, ) sentiment = gr.Radio( choices=["Positive", "Natural", "Negative"], value="Natural", label="Sentiment", interactive=True, ) factuality = gr.Radio( choices=["Factual", "Imagination"], value="Factual", label="Factuality", interactive=True, ) length = gr.Slider( minimum=5, maximum=100, value=10, step=1, interactive=True, label="Length", ) with gr.Column(scale=1.5): with gr.Row(): image_output_mask= gr.Image(type="pil", interactive=False, label="Mask").style(height=260,scale=1.0) image_output_crop= gr.Image(type="pil", interactive=False, label="Cropped Image by Mask", show_progress=False).style(height=260,scale=1.0) chatbot = gr.Chatbot(label="Chat Output",).style(height=450,scale=0.5) with gr.Row(): with gr.Column(scale=0.7): prompt_input = gr.Textbox(lines=1, label="Input Prompt (A list of points like : [[100, 200, 1], [200,300,0]])") prompt_input.submit( inference_seg_cap, [ image_input, prompt_input, language, sentiment, factuality, length, state, click_state ], [chatbot, state, click_state, image_output_mask, image_output_crop], show_progress=False ) image_input.upload( upload_callback, [image_input, state], [chatbot] ) with gr.Row(): clear_button = gr.Button(value="Clear Click", interactive=True) clear_button.click( lambda: ("", [[], [], []], None, None), [], [prompt_input, click_state, image_output_mask, image_output_crop], queue=False, show_progress=False ) clear_button = gr.Button(value="Clear", interactive=True) clear_button.click( lambda: ("", [], [], [[], [], []], None, None), [], [prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop], queue=False, show_progress=False ) submit_button = gr.Button( value="Submit", interactive=True, variant="primary" ) submit_button.click( inference_seg_cap, [ image_input, prompt_input, language, sentiment, factuality, length, state, click_state ], [chatbot, state, click_state, image_output_mask, image_output_crop], show_progress=False ) # select coordinate image_input.select( get_select_coords, inputs=[image_input,point_prompt,language,sentiment,factuality,length,state,click_state], outputs=[prompt_input, chatbot, state, click_state, image_output_mask, image_output_crop], show_progress=False ) image_input.change( lambda: ("", [], [[], [], []]), [], [chatbot, state, click_state], queue=False, ) with gr.Column(scale=1.5): chat_input = gr.Textbox(lines=1, label="Chat Input") chat_input.submit(chat_with_points, [chat_input, click_state, state], [chatbot, state]) examples = gr.Examples( examples=examples, inputs=[image_input, prompt_input], ) iface.queue(concurrency_count=1, api_open=False, max_size=10) iface.launch(server_name="0.0.0.0", enable_queue=True, server_port=args.port, share=args.gradio_share)