import time import torch import cv2 from PIL import Image, ImageDraw, ImageOps import numpy as np from typing import Union from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator from caption_anything.utils.utils import prepare_segmenter, seg_model_map, load_image import matplotlib.pyplot as plt import PIL class BaseSegmenter: def __init__(self, device, checkpoint, model_name='huge', reuse_feature=True, model=None, args=None): print(f"Initializing BaseSegmenter to {device}") self.device = device self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 self.processor = None if model is None: if checkpoint is None: _, checkpoint = prepare_segmenter(model_name) self.model = sam_model_registry[seg_model_map[model_name]](checkpoint=checkpoint) self.checkpoint = checkpoint self.model.to(device=self.device) else: self.model = model self.reuse_feature = reuse_feature self.predictor = SamPredictor(self.model) sam_generator_keys = ['pred_iou_thresh', 'min_mask_region_area', 'stability_score_thresh', 'box_nms_thresh'] generator_args = {k:v for k,v in vars(args).items() if k in sam_generator_keys} self.mask_generator = SamAutomaticMaskGenerator(model=self.model, **generator_args) self.image_embedding = None self.image = None @torch.no_grad() def set_image(self, image: Union[np.ndarray, Image.Image, str]): image = load_image(image, return_type='numpy') self.image = image if self.reuse_feature: self.predictor.set_image(image) self.image_embedding = self.predictor.get_image_embedding() print(self.image_embedding.shape) @torch.no_grad() def inference(self, image: Union[np.ndarray, Image.Image, str], control: dict): """ SAM inference of image according to control. Args: image: str or PIL.Image or np.ndarray control: dict to control SAM. prompt_type: 1. {control['prompt_type'] = ['everything']} to segment everything in the image. 2. {control['prompt_type'] = ['click', 'box']} to segment according to click and box. 3. {control['prompt_type'] = ['click'] to segment according to click. 4. {control['prompt_type'] = ['box'] to segment according to box. input_point: list of [x, y] coordinates of click. input_label: List of labels for points accordingly, 0 for negative, 1 for positive. input_box: List of [x1, y1, x2, y2] coordinates of box. multimask_output: If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. Returns: masks: np.ndarray of shape [num_masks, height, width] """ image = load_image(image, return_type='numpy') if 'everything' in control['prompt_type']: masks = self.mask_generator.generate(image) new_masks = np.concatenate([mask["segmentation"][np.newaxis, :] for mask in masks]) bbox = np.array([mask["bbox"] for mask in masks]) area = np.array([mask["area"] for mask in masks]) return new_masks, bbox, area else: if not self.reuse_feature or self.image_embedding is None: self.set_image(image) self.predictor.set_image(self.image) else: assert self.image_embedding is not None self.predictor.features = self.image_embedding if 'mutimask_output' in control: masks, scores, logits = self.predictor.predict( point_coords=np.array(control['input_point']), point_labels=np.array(control['input_label']), multimask_output=True, ) elif 'input_boxes' in control: transformed_boxes = self.predictor.transform.apply_boxes_torch( torch.tensor(control["input_boxes"], device=self.predictor.device), image.shape[1::-1] # Reverse shape because numpy is (W, H) and function need (H, W) ) masks, _, _ = self.predictor.predict_torch( point_coords=None, point_labels=None, boxes=transformed_boxes, multimask_output=False, ) masks = masks.squeeze(1).cpu().numpy() else: input_point = np.array(control['input_point']) if 'click' in control['prompt_type'] else None input_label = np.array(control['input_label']) if 'click' in control['prompt_type'] else None input_box = np.array(control['input_box']) if 'box' in control['prompt_type'] else None masks, scores, logits = self.predictor.predict( point_coords=input_point, point_labels=input_label, box=input_box, multimask_output=False, ) if 0 in control['input_label']: mask_input = logits[np.argmax(scores), :, :] masks, scores, logits = self.predictor.predict( point_coords=input_point, point_labels=input_label, box=input_box, mask_input=mask_input[None, :, :], multimask_output=False, ) return masks if __name__ == "__main__": image_path = 'segmenter/images/truck.jpg' prompts = [ # { # "prompt_type":["click"], # "input_point":[[500, 375]], # "input_label":[1], # "multimask_output":"True", # }, { "prompt_type": ["click"], "input_point": [[1000, 600], [1325, 625]], "input_label": [1, 0], }, # { # "prompt_type":["click", "box"], # "input_box":[425, 600, 700, 875], # "input_point":[[575, 750]], # "input_label": [0] # }, # { # "prompt_type":["box"], # "input_boxes": [ # [75, 275, 1725, 850], # [425, 600, 700, 875], # [1375, 550, 1650, 800], # [1240, 675, 1400, 750], # ] # }, # { # "prompt_type":["everything"] # }, ] init_time = time.time() segmenter = BaseSegmenter( device='cuda', # checkpoint='sam_vit_h_4b8939.pth', checkpoint='segmenter/sam_vit_h_4b8939.pth', model_type='vit_h', reuse_feature=True ) print(f'init time: {time.time() - init_time}') image_path = 'test_images/img2.jpg' infer_time = time.time() for i, prompt in enumerate(prompts): print(f'{prompt["prompt_type"]} mode') image = Image.open(image_path) segmenter.set_image(np.array(image)) masks = segmenter.inference(np.array(image), prompt) Image.fromarray(masks[0]).save('seg.png') print(masks.shape) print(f'infer time: {time.time() - infer_time}')