from __future__ import print_function import torch import numpy as np from PIL import Image import os import pickle def tensor2im(input_image, imtype=np.uint8): """"Convert a Tensor array into a numpy image array. Parameters: input_image (tensor) -- the input image tensor array imtype (type) -- the desired type of the converted numpy array """ if not isinstance(input_image, np.ndarray): if isinstance(input_image, torch.Tensor): # get the data from a variable image_tensor = input_image.data else: return input_image image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array if image_numpy.shape[0] == 1: # grayscale to RGB image_numpy = np.tile(image_numpy, (3, 1, 1)) image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling else: # if it is a numpy array, do nothing image_numpy = input_image return image_numpy.astype(imtype) def tensor2vec(vector_tensor): numpy_vec = vector_tensor.data.cpu().numpy() if numpy_vec.ndim == 4: return numpy_vec[:, :, 0, 0] else: return numpy_vec def pickle_load(file_name): data = None with open(file_name, 'rb') as f: data = pickle.load(f) return data def pickle_save(file_name, data): with open(file_name, 'wb') as f: pickle.dump(data, f, protocol=pickle.HIGHEST_PROTOCOL) def diagnose_network(net, name='network'): """Calculate and print the mean of average absolute(gradients) Parameters: net (torch network) -- Torch network name (str) -- the name of the network """ mean = 0.0 count = 0 for param in net.parameters(): if param.grad is not None: mean += torch.mean(torch.abs(param.grad.data)) count += 1 if count > 0: mean = mean / count print(name) print(mean) def interp_z(z0, z1, num_frames, interp_mode='linear'): zs = [] if interp_mode == 'linear': for n in range(num_frames): ratio = n / float(num_frames - 1) z_t = (1 - ratio) * z0 + ratio * z1 zs.append(z_t[np.newaxis, :]) zs = np.concatenate(zs, axis=0).astype(np.float32) if interp_mode == 'slerp': z0_n = z0 / (np.linalg.norm(z0) + 1e-10) z1_n = z1 / (np.linalg.norm(z1) + 1e-10) omega = np.arccos(np.dot(z0_n, z1_n)) sin_omega = np.sin(omega) if sin_omega < 1e-10 and sin_omega > -1e-10: zs = interp_z(z0, z1, num_frames, interp_mode='linear') else: for n in range(num_frames): ratio = n / float(num_frames - 1) z_t = np.sin((1 - ratio) * omega) / sin_omega * z0 + np.sin(ratio * omega) / sin_omega * z1 zs.append(z_t[np.newaxis, :]) zs = np.concatenate(zs, axis=0).astype(np.float32) return zs def save_image(image_numpy, image_path): """Save a numpy image to the disk Parameters: image_numpy (numpy array) -- input numpy array image_path (str) -- the path of the image """ image_pil = Image.fromarray(image_numpy) image_pil.save(image_path) def print_numpy(x, val=True, shp=False): """Print the mean, min, max, median, std, and size of a numpy array Parameters: val (bool) -- if print the values of the numpy array shp (bool) -- if print the shape of the numpy array """ x = x.astype(np.float64) if shp: print('shape,', x.shape) if val: x = x.flatten() print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) def mkdirs(paths): """create empty directories if they don't exist Parameters: paths (str list) -- a list of directory paths """ if isinstance(paths, list) and not isinstance(paths, str): for path in paths: mkdir(path) else: mkdir(paths) def mkdir(path): """create a single empty directory if it didn't exist Parameters: path (str) -- a single directory path """ if not os.path.exists(path): os.makedirs(path, exist_ok=True)