import os from options.test_options import TestOptions from data import create_dataset from models import create_model from util.visualizer import save_images from itertools import islice from util import html import cv2 seed = 10 import torch import numpy as np torch.manual_seed(seed) torch.cuda.manual_seed(seed) np.random.seed(seed) # options opt = TestOptions().parse() opt.num_threads = 1 # test code only supports num_threads=1 opt.batch_size = 1 # test code only supports batch_size=1 opt.serial_batches = True # no shuffle model = create_model(opt) model.setup(opt) model.eval() print('Loading model %s' % opt.model) testdata = ['manga_paper'] # fake_sty = model.get_z_random(1, 64, truncation=True) opt.dataset_mode = 'singleSr' for folder in testdata: opt.folder = folder # create dataset dataset = create_dataset(opt) web_dir = os.path.join(opt.results_dir, opt.folder + '_Sr2Co') webpage = html.HTML(web_dir, 'Training = %s, Phase = %s, Class =%s' % (opt.name, opt.phase, opt.name)) # fake_sty = model.get_z_random(1, 64, truncation=True) for i, data in enumerate(islice(dataset, opt.num_test)): h = data['h'] w = data['w'] model.set_input(data) fake_sty = model.get_z_random(1, 64, truncation=True, tvalue=1.25) fake_B, SCR, line = model.forward(AtoB=False, sty=fake_sty) images=[fake_B[:,:,:h,:w]] names=['color'] img_path = 'input_%3.3d' % i save_images(webpage, images, names, img_path, aspect_ratio=opt.aspect_ratio, width=opt.crop_size) webpage.save() testdata = ['western_paper'] opt.dataset_mode = 'singleCo' for folder in testdata: opt.folder = folder # create dataset dataset = create_dataset(opt) web_dir = os.path.join(opt.results_dir, opt.folder + '_Sr2Co') webpage = html.HTML(web_dir, 'Training = %s, Phase = %s, Class =%s' % (opt.name, opt.phase, opt.name)) for i, data in enumerate(islice(dataset, opt.num_test)): h = data['h'] w = data['w'] model.set_input(data) fake_B, fake_B2, SCR = model.forward(AtoB=True) images=[fake_B2[:,:,:h,:w]] names=['manga'] img_path = 'input_%3.3d' % i save_images(webpage, images, names, img_path, aspect_ratio=opt.aspect_ratio, width=opt.crop_size) webpage.save()