import spaces
import contextlib
import gc
import json
import logging
import math
import os
import random
import shutil
import sys
import time
import itertools
from pathlib import Path
import cv2
import numpy as np
from PIL import Image, ImageDraw
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
import accelerate
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from datasets import load_dataset
from huggingface_hub import create_repo, upload_folder
from packaging import version
from safetensors.torch import load_model
from peft import LoraConfig
import gradio as gr
import pandas as pd
import transformers
from transformers import (
AutoTokenizer,
PretrainedConfig,
CLIPVisionModelWithProjection,
CLIPImageProcessor,
CLIPProcessor,
)
import diffusers
from diffusers import (
AutoencoderKL,
DDPMScheduler,
ColorGuiderPixArtModel,
ColorGuiderSDModel,
UNet2DConditionModel,
PixArtTransformer2DModel,
ColorFlowPixArtAlphaPipeline,
ColorFlowSDPipeline,
UniPCMultistepScheduler,
)
from colorflow_utils.utils import *
sys.path.append('./BidirectionalTranslation')
from options.test_options import TestOptions
from models import create_model
from util import util
from huggingface_hub import snapshot_download
article = r"""
If ColorFlow is helpful, please help to ⭐ the Github Repo. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/ColorFlow)](https://github.com/TencentARC/ColorFlow)
📧 **Contact**
If you have any questions, please feel free to reach me out at zhuangjh23@mails.tsinghua.edu.cn.
📝 **Citation**
If our work is useful for your research, please consider citing:
```bibtex
@misc{zhuang2024colorflow,
title={ColorFlow: Retrieval-Augmented Image Sequence Colorization},
author={Junhao Zhuang and Xuan Ju and Zhaoyang Zhang and Yong Liu and Shiyi Zhang and Chun Yuan and Ying Shan},
year={2024},
eprint={2412.11815},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2412.11815},
}
```
"""
model_global_path = snapshot_download(repo_id="TencentARC/ColorFlow", cache_dir='./colorflow/', repo_type="model")
print(model_global_path)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
weight_dtype = torch.float16
# line model
line_model_path = model_global_path + '/LE/erika.pth'
line_model = res_skip()
line_model.load_state_dict(torch.load(line_model_path))
line_model.eval()
line_model.cuda()
# screen model
global opt
opt = TestOptions().parse(model_global_path)
ScreenModel = create_model(opt, model_global_path)
ScreenModel.setup(opt)
ScreenModel.eval()
image_processor = CLIPImageProcessor()
image_encoder = CLIPVisionModelWithProjection.from_pretrained(model_global_path + '/image_encoder/').to('cuda')
examples = [
[
"./assets/example_5/input.png",
["./assets/example_5/ref1.png", "./assets/example_5/ref2.png", "./assets/example_5/ref3.png"],
"GrayImage(ScreenStyle)",
"800x512",
0,
10
],
[
"./assets/example_4/input.jpg",
["./assets/example_4/ref1.jpg", "./assets/example_4/ref2.jpg", "./assets/example_4/ref3.jpg"],
"GrayImage(ScreenStyle)",
"640x640",
0,
10
],
[
"./assets/example_3/input.png",
["./assets/example_3/ref1.png", "./assets/example_3/ref2.png", "./assets/example_3/ref3.png"],
"GrayImage(ScreenStyle)",
"800x512",
0,
10
],
[
"./assets/example_2/input.png",
["./assets/example_2/ref1.png", "./assets/example_2/ref2.png", "./assets/example_2/ref3.png"],
"GrayImage(ScreenStyle)",
"800x512",
0,
10
],
[
"./assets/example_1/input.jpg",
["./assets/example_1/ref1.jpg", "./assets/example_1/ref2.jpg", "./assets/example_1/ref3.jpg"],
"Sketch",
"640x640",
1,
10
],
[
"./assets/example_0/input.jpg",
["./assets/example_0/ref1.jpg"],
"Sketch",
"640x640",
1,
10
],
]
global pipeline
global MultiResNetModel
@spaces.GPU
def load_ckpt(input_style):
global pipeline
global MultiResNetModel
if input_style == "Sketch":
ckpt_path = model_global_path + '/sketch/'
rank = 128
pretrained_model_name_or_path = 'PixArt-alpha/PixArt-XL-2-1024-MS'
transformer = PixArtTransformer2DModel.from_pretrained(
pretrained_model_name_or_path, subfolder="transformer", revision=None, variant=None
)
pixart_config = get_pixart_config()
ColorGuider = ColorGuiderPixArtModel.from_pretrained(ckpt_path)
transformer_lora_config = LoraConfig(
r=rank,
lora_alpha=rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0", "proj_in", "proj_out", "ff.net.0.proj", "ff.net.2", "proj", "linear", "linear_1", "linear_2"]
)
transformer.add_adapter(transformer_lora_config)
ckpt_key_t = torch.load(ckpt_path + 'transformer_lora.bin', map_location='cpu')
transformer.load_state_dict(ckpt_key_t, strict=False)
transformer.to('cuda', dtype=weight_dtype)
ColorGuider.to('cuda', dtype=weight_dtype)
pipeline = ColorFlowPixArtAlphaPipeline.from_pretrained(
pretrained_model_name_or_path,
transformer=transformer,
colorguider=ColorGuider,
safety_checker=None,
revision=None,
variant=None,
torch_dtype=weight_dtype,
)
pipeline = pipeline.to("cuda")
block_out_channels = [128, 128, 256, 512, 512]
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels))
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False)
MultiResNetModel.to('cuda', dtype=weight_dtype)
elif input_style == "GrayImage(ScreenStyle)":
ckpt_path = model_global_path + '/GraySD/'
rank = 64
pretrained_model_name_or_path = 'stable-diffusion-v1-5/stable-diffusion-v1-5'
unet = UNet2DConditionModel.from_pretrained(
pretrained_model_name_or_path, subfolder="unet", revision=None, variant=None
)
ColorGuider = ColorGuiderSDModel.from_pretrained(ckpt_path)
ColorGuider.to('cuda', dtype=weight_dtype)
unet.to('cuda', dtype=weight_dtype)
pipeline = ColorFlowSDPipeline.from_pretrained(
pretrained_model_name_or_path,
unet=unet,
colorguider=ColorGuider,
safety_checker=None,
revision=None,
variant=None,
torch_dtype=weight_dtype,
)
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
unet_lora_config = LoraConfig(
r=rank,
lora_alpha=rank,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"],#ff.net.0.proj ff.net.2
)
pipeline.unet.add_adapter(unet_lora_config)
pipeline.unet.load_state_dict(torch.load(ckpt_path + 'unet_lora.bin', map_location='cpu'), strict=False)
pipeline = pipeline.to("cuda")
block_out_channels = [128, 128, 256, 512, 512]
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels))
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False)
MultiResNetModel.to('cuda', dtype=weight_dtype)
global cur_input_style
cur_input_style = "Sketch"
load_ckpt(cur_input_style)
cur_input_style = "GrayImage(ScreenStyle)"
load_ckpt(cur_input_style)
cur_input_style = None
@spaces.GPU
def fix_random_seeds(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def process_multi_images(files):
images = [Image.open(file.name) for file in files]
imgs = []
for i, img in enumerate(images):
imgs.append(img)
return imgs
@spaces.GPU
def extract_lines(image):
src = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
rows = int(np.ceil(src.shape[0] / 16)) * 16
cols = int(np.ceil(src.shape[1] / 16)) * 16
patch = np.ones((1, 1, rows, cols), dtype="float32")
patch[0, 0, 0:src.shape[0], 0:src.shape[1]] = src
tensor = torch.from_numpy(patch).cuda()
with torch.no_grad():
y = line_model(tensor)
yc = y.cpu().numpy()[0, 0, :, :]
yc[yc > 255] = 255
yc[yc < 0] = 0
outimg = yc[0:src.shape[0], 0:src.shape[1]]
outimg = outimg.astype(np.uint8)
outimg = Image.fromarray(outimg)
torch.cuda.empty_cache()
return outimg
@spaces.GPU
def to_screen_image(input_image):
global opt
global ScreenModel
input_image = input_image.convert('RGB')
input_image = get_ScreenVAE_input(input_image, opt)
h = input_image['h']
w = input_image['w']
ScreenModel.set_input(input_image)
fake_B, fake_B2, SCR = ScreenModel.forward(AtoB=True)
images=fake_B2[:,:,:h,:w]
im = util.tensor2im(images)
image_pil = Image.fromarray(im)
torch.cuda.empty_cache()
return image_pil
@spaces.GPU
def extract_line_image(query_image_, input_style, resolution):
if resolution == "640x640":
tar_width = 640
tar_height = 640
elif resolution == "512x800":
tar_width = 512
tar_height = 800
elif resolution == "800x512":
tar_width = 800
tar_height = 512
else:
gr.Info("Unsupported resolution")
query_image = process_image(query_image_, int(tar_width*1.5), int(tar_height*1.5))
if input_style == "GrayImage(ScreenStyle)":
extracted_line = to_screen_image(query_image)
extracted_line = Image.blend(extracted_line.convert('L').convert('RGB'), query_image.convert('L').convert('RGB'), 0.5)
input_context = extracted_line
elif input_style == "Sketch":
query_image = query_image.convert('L').convert('RGB')
extracted_line = extract_lines(query_image)
extracted_line = extracted_line.convert('L').convert('RGB')
input_context = extracted_line
torch.cuda.empty_cache()
return input_context, extracted_line, input_context
@spaces.GPU(duration=180)
def colorize_image(VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps):
if VAE_input is None or input_context is None:
gr.Info("Please preprocess the image first")
raise ValueError("Please preprocess the image first")
global cur_input_style
global pipeline
global MultiResNetModel
if input_style != cur_input_style:
gr.Info(f"Loading {input_style} model...")
load_ckpt(input_style)
cur_input_style = input_style
gr.Info(f"{input_style} model loaded")
reference_images = process_multi_images(reference_images)
fix_random_seeds(seed)
if resolution == "640x640":
tar_width = 640
tar_height = 640
elif resolution == "512x800":
tar_width = 512
tar_height = 800
elif resolution == "800x512":
tar_width = 800
tar_height = 512
else:
gr.Info("Unsupported resolution")
validation_mask = Image.open('./assets/mask.png').convert('RGB').resize((tar_width*2, tar_height*2))
gr.Info("Image retrieval in progress...")
query_image_bw = process_image(input_context, int(tar_width), int(tar_height))
query_image = query_image_bw.convert('RGB')
query_image_vae = process_image(VAE_input, int(tar_width*1.5), int(tar_height*1.5))
reference_images = [process_image(ref_image, tar_width, tar_height) for ref_image in reference_images]
query_patches_pil = process_image_Q_varres(query_image, tar_width, tar_height)
reference_patches_pil = []
for reference_image in reference_images:
reference_patches_pil += process_image_ref_varres(reference_image, tar_width, tar_height)
combined_image = None
with torch.no_grad():
clip_img = image_processor(images=query_patches_pil, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
query_embeddings = image_encoder(clip_img).image_embeds
reference_patches_pil_gray = [rimg.convert('RGB').convert('RGB') for rimg in reference_patches_pil]
clip_img = image_processor(images=reference_patches_pil_gray, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype)
reference_embeddings = image_encoder(clip_img).image_embeds
cosine_similarities = F.cosine_similarity(query_embeddings.unsqueeze(1), reference_embeddings.unsqueeze(0), dim=-1)
sorted_indices = torch.argsort(cosine_similarities, descending=True, dim=1).tolist()
top_k = 3
top_k_indices = [cur_sortlist[:top_k] for cur_sortlist in sorted_indices]
combined_image = Image.new('RGB', (tar_width * 2, tar_height * 2), 'white')
combined_image.paste(query_image_bw.resize((tar_width, tar_height)), (tar_width//2, tar_height//2))
idx_table = {0:[(1,0), (0,1), (0,0)], 1:[(1,3), (0,2),(0,3)], 2:[(2,0),(3,1), (3,0)], 3:[(2,3), (3,2),(3,3)]}
for i in range(2):
for j in range(2):
idx_list = idx_table[i * 2 + j]
for k in range(top_k):
ref_index = top_k_indices[i * 2 + j][k]
idx_y = idx_list[k][0]
idx_x = idx_list[k][1]
combined_image.paste(reference_patches_pil[ref_index].resize((tar_width//2-2, tar_height//2-2)), (tar_width//2 * idx_x + 1, tar_height//2 * idx_y + 1))
gr.Info("Model inference in progress...")
generator = torch.Generator(device='cuda').manual_seed(seed)
image = pipeline(
"manga", cond_image=combined_image, cond_mask=validation_mask, num_inference_steps=num_inference_steps, generator=generator
).images[0]
gr.Info("Post-processing image...")
with torch.no_grad():
width, height = image.size
new_width = width // 2
new_height = height // 2
left = (width - new_width) // 2
top = (height - new_height) // 2
right = left + new_width
bottom = top + new_height
center_crop = image.crop((left, top, right, bottom))
up_img = center_crop.resize(query_image_vae.size)
test_low_color = transform(up_img).unsqueeze(0).to('cuda', dtype=weight_dtype)
query_image_vae = transform(query_image_vae).unsqueeze(0).to('cuda', dtype=weight_dtype)
h_color, hidden_list_color = pipeline.vae._encode(test_low_color,return_dict = False, hidden_flag = True)
h_bw, hidden_list_bw = pipeline.vae._encode(query_image_vae, return_dict = False, hidden_flag = True)
hidden_list_double = [torch.cat((hidden_list_color[hidden_idx], hidden_list_bw[hidden_idx]), dim = 1) for hidden_idx in range(len(hidden_list_color))]
hidden_list = MultiResNetModel(hidden_list_double)
output = pipeline.vae._decode(h_color.sample(),return_dict = False, hidden_list = hidden_list)[0]
output[output > 1] = 1
output[output < -1] = -1
high_res_image = Image.fromarray(((output[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)).convert("RGB")
gr.Info("Colorization complete!")
torch.cuda.empty_cache()
return high_res_image, up_img, image, query_image_bw
with gr.Blocks() as demo:
gr.HTML(
"""
Project Page | ArXiv Preprint | GitHub Repository
NOTE: Each time you switch the input style, the corresponding model will be reloaded, which may take some time. Please be patient.
Welcome to the demo of ColorFlow. Follow the steps below to explore the capabilities of our model:
⏱️ ZeroGPU Time Limit: Hugging Face ZeroGPU has an inference time limit of 180 seconds. You may need to log in with a free account to use this demo. Large sampling steps might lead to timeout (GPU Abort). In that case, please consider logging in with a Pro account or running it on your local machine.
注意:每次切换输入样式时,相应的模型将被重新加载,可能需要一些时间。请耐心等待。
欢迎使用 ColorFlow 演示。请按照以下步骤探索我们模型的能力:
⏱️ ZeroGPU时间限制:Hugging Face ZeroGPU 的推理时间限制为 180 秒。您可能需要使用免费帐户登录以使用此演示。大采样步骤可能会导致超时(GPU 中止)。在这种情况下,请考虑使用专业帐户登录或在本地计算机上运行。