CustomNet / configs /config_customnet.yaml
jiangyzy's picture
Upload 35 files
28b27d8 verified
raw
history blame
2.93 kB
model:
base_learning_rate: 2.0e-05
target: customnet.customnet.CustomNet
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "image_target"
cond_stage_key: "image_cond"
image_size: 32
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: hybrid
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: false
use_cond_concat: true
use_bbox_mask: false
use_bg_inpainting: false
learning_rate_scale: 10
ucg_training:
txt: 0.15
sd_15_ckpt: #"v1-5-pruned-emaonly.ckpt"
unet_config:
target: customnet.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 8
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPImageEmbedder
text_encoder_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
params:
version: openai/clip-vit-large-patch14
## this is a template dataset
train_data:
target: data.dataset.Dataset
params:
image_size: 256
root: examples/dataset/
train_dataloader:
batch_size: 12
num_workers: 8
lightning:
find_unused_parameters: false
metrics_over_trainsteps_checkpoint: True
modelcheckpoint:
params:
every_n_train_steps: 10000
save_top_k: -1
monitor: null
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 2500
max_images: 32
increase_log_steps: False
log_first_step: True
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 32
unconditional_guidance_scale: 3.0
unconditional_guidance_label: [""]
trainer:
benchmark: True
limit_val_batches: 0
num_sanity_val_steps: 0
accumulate_grad_batches: 1