Spaces:
Running
on
Zero
Running
on
Zero
model: | |
base_learning_rate: 2.0e-05 | |
target: customnet.customnet.CustomNet | |
params: | |
linear_start: 0.00085 | |
linear_end: 0.0120 | |
num_timesteps_cond: 1 | |
log_every_t: 200 | |
timesteps: 1000 | |
first_stage_key: "image_target" | |
cond_stage_key: "image_cond" | |
image_size: 32 | |
channels: 4 | |
cond_stage_trainable: false # Note: different from the one we trained before | |
conditioning_key: hybrid | |
monitor: val/loss_simple_ema | |
scale_factor: 0.18215 | |
use_ema: false | |
use_cond_concat: true | |
use_bbox_mask: false | |
use_bg_inpainting: false | |
learning_rate_scale: 10 | |
ucg_training: | |
txt: 0.15 | |
sd_15_ckpt: #"v1-5-pruned-emaonly.ckpt" | |
unet_config: | |
target: customnet.openaimodel.UNetModel | |
params: | |
image_size: 32 # unused | |
in_channels: 8 | |
out_channels: 4 | |
model_channels: 320 | |
attention_resolutions: [ 4, 2, 1 ] | |
num_res_blocks: 2 | |
channel_mult: [ 1, 2, 4, 4 ] | |
num_heads: 8 | |
use_spatial_transformer: True | |
transformer_depth: 1 | |
context_dim: 768 | |
use_checkpoint: True | |
legacy: False | |
first_stage_config: | |
target: ldm.models.autoencoder.AutoencoderKL | |
params: | |
embed_dim: 4 | |
monitor: val/rec_loss | |
ddconfig: | |
double_z: true | |
z_channels: 4 | |
resolution: 256 | |
in_channels: 3 | |
out_ch: 3 | |
ch: 128 | |
ch_mult: | |
- 1 | |
- 2 | |
- 4 | |
- 4 | |
num_res_blocks: 2 | |
attn_resolutions: [] | |
dropout: 0.0 | |
lossconfig: | |
target: torch.nn.Identity | |
cond_stage_config: | |
target: ldm.modules.encoders.modules.FrozenCLIPImageEmbedder | |
text_encoder_config: | |
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder | |
params: | |
version: openai/clip-vit-large-patch14 | |
## this is a template dataset | |
train_data: | |
target: data.dataset.Dataset | |
params: | |
image_size: 256 | |
root: examples/dataset/ | |
train_dataloader: | |
batch_size: 12 | |
num_workers: 8 | |
lightning: | |
find_unused_parameters: false | |
metrics_over_trainsteps_checkpoint: True | |
modelcheckpoint: | |
params: | |
every_n_train_steps: 10000 | |
save_top_k: -1 | |
monitor: null | |
callbacks: | |
image_logger: | |
target: main.ImageLogger | |
params: | |
batch_frequency: 2500 | |
max_images: 32 | |
increase_log_steps: False | |
log_first_step: True | |
log_images_kwargs: | |
use_ema_scope: False | |
inpaint: False | |
plot_progressive_rows: False | |
plot_diffusion_rows: False | |
N: 32 | |
unconditional_guidance_scale: 3.0 | |
unconditional_guidance_label: [""] | |
trainer: | |
benchmark: True | |
limit_val_batches: 0 | |
num_sanity_val_steps: 0 | |
accumulate_grad_batches: 1 | |