Spaces:
Running
on
Zero
Running
on
Zero
File size: 24,143 Bytes
4b7dd03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 |
import math
from dataclasses import dataclass
import torch
from einops import rearrange, repeat
from torch import Tensor, nn
import torch.nn.functional as F
import torch
from einops import rearrange
def attention(q, k, v, pe):
q, k = apply_rope(q, k, pe)
x = torch.nn.functional.scaled_dot_product_attention(q, k, v)
x = rearrange(x, "B H L D -> B L (H D)")
return x
def rope(pos, dim: int, theta: int):
assert dim % 2 == 0
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
omega = 1.0 / (theta**scale)
out = torch.einsum("...n,d->...nd", pos, omega)
out = torch.stack([torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1)
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.float()
def apply_rope(xq, xk, freqs_cis):
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
super().__init__()
self.dim = dim
self.theta = theta
self.axes_dim = axes_dim
def forward(self, ids: Tensor):
n_axes = ids.shape[-1]
emb = torch.cat(
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
dim=-3,
)
return emb.unsqueeze(1)
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0):
"""
Create sinusoidal timestep embeddings.
:param t: a 1-D Tensor of N indices, one per batch element.
These may be fractional.
:param dim: the dimension of the output.
:param max_period: controls the minimum frequency of the embeddings.
:return: an (N, D) Tensor of positional embeddings.
"""
t = time_factor * t
half = dim // 2
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
t.device)
args = t[:, None].float() * freqs[None]
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
if dim % 2:
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
if torch.is_floating_point(t):
embedding = embedding.to(t)
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int):
super().__init__()
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
self.silu = nn.SiLU()
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
def forward(self, x: Tensor):
return self.out_layer(self.silu(self.in_layer(x)))
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.scale = nn.Parameter(torch.ones(dim))
def forward(self, x: Tensor):
x_dtype = x.dtype
x = x.float()
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6)
return (x * rrms).to(dtype=x_dtype) * self.scale
class QKNorm(torch.nn.Module):
def __init__(self, dim: int):
super().__init__()
self.query_norm = RMSNorm(dim)
self.key_norm = RMSNorm(dim)
def forward(self, q: Tensor, k: Tensor, v: Tensor):
q = self.query_norm(q)
k = self.key_norm(k)
return q.to(v), k.to(v)
class LoRALinearLayer(nn.Module):
def __init__(self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None):
super().__init__()
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
self.network_alpha = network_alpha
self.rank = rank
nn.init.normal_(self.down.weight, std=1 / rank)
nn.init.zeros_(self.up.weight)
def forward(self, hidden_states):
orig_dtype = hidden_states.dtype
dtype = self.down.weight.dtype
down_hidden_states = self.down(hidden_states.to(dtype))
up_hidden_states = self.up(down_hidden_states)
if self.network_alpha is not None:
up_hidden_states *= self.network_alpha / self.rank
return up_hidden_states.to(orig_dtype)
class FLuxSelfAttnProcessor:
def __call__(self, attn, x, pe, **attention_kwargs):
print('2' * 30)
qkv = attn.qkv(x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = attn.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = attn.proj(x)
return x
class LoraFluxAttnProcessor(nn.Module):
def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
super().__init__()
self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
self.proj_lora = LoRALinearLayer(dim, dim, rank, network_alpha)
self.lora_weight = lora_weight
def __call__(self, attn, x, pe, **attention_kwargs):
qkv = attn.qkv(x) + self.qkv_lora(x) * self.lora_weight
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads)
q, k = attn.norm(q, k, v)
x = attention(q, k, v, pe=pe)
x = attn.proj(x) + self.proj_lora(x) * self.lora_weight
print('1' * 30)
print(x.norm(), (self.proj_lora(x) * self.lora_weight).norm(), 'norm')
return x
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.norm = QKNorm(head_dim)
self.proj = nn.Linear(dim, dim)
def forward():
pass
@dataclass
class ModulationOut:
shift: Tensor
scale: Tensor
gate: Tensor
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
def forward(self, vec: Tensor):
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
return (
ModulationOut(*out[:3]),
ModulationOut(*out[3:]) if self.is_double else None,
)
class DoubleStreamBlockLoraProcessor(nn.Module):
def __init__(self, dim: int, rank=4, network_alpha=None, lora_weight=1):
super().__init__()
self.qkv_lora1 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
self.proj_lora1 = LoRALinearLayer(dim, dim, rank, network_alpha)
self.qkv_lora2 = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
self.proj_lora2 = LoRALinearLayer(dim, dim, rank, network_alpha)
self.lora_weight = lora_weight
def __call__(self, attn, img, txt, vec, pe):
img_mod1, img_mod2 = attn.img_mod(vec)
txt_mod1, txt_mod2 = attn.txt_mod(vec)
# prepare image for attention
img_modulated = attn.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = attn.img_attn.qkv(img_modulated) + self.qkv_lora1(img_modulated) * self.lora_weight
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = attn.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = attn.txt_attn.qkv(txt_modulated) + self.qkv_lora2(txt_modulated) * self.lora_weight
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn1 = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * attn.img_attn.proj(img_attn) + img_mod1.gate * self.proj_lora1(img_attn) * self.lora_weight
img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn) + txt_mod1.gate * self.proj_lora2(txt_attn) * self.lora_weight
txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
return img, txt
class IPDoubleStreamBlockProcessor(nn.Module):
"""Attention processor for handling IP-adapter with double stream block."""
def __init__(self, context_dim, hidden_dim):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"IPDoubleStreamBlockProcessor requires PyTorch 2.0 or higher. Please upgrade PyTorch."
)
# Ensure context_dim matches the dimension of image_proj
self.context_dim = context_dim
self.hidden_dim = hidden_dim
# Initialize projections for IP-adapter
self.ip_adapter_double_stream_k_proj = nn.Linear(context_dim, hidden_dim, bias=True)
self.ip_adapter_double_stream_v_proj = nn.Linear(context_dim, hidden_dim, bias=True)
nn.init.zeros_(self.ip_adapter_double_stream_k_proj.weight)
nn.init.zeros_(self.ip_adapter_double_stream_k_proj.bias)
nn.init.zeros_(self.ip_adapter_double_stream_v_proj.weight)
nn.init.zeros_(self.ip_adapter_double_stream_v_proj.bias)
def __call__(self, attn, img, txt, vec, pe, image_proj, ip_scale=1.0, **attention_kwargs):
# Prepare image for attention
img_mod1, img_mod2 = attn.img_mod(vec)
txt_mod1, txt_mod2 = attn.txt_mod(vec)
img_modulated = attn.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = attn.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)
txt_modulated = attn.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = attn.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn1 = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn1[:, :txt.shape[1]], attn1[:, txt.shape[1]:]
img = img + img_mod1.gate * attn.img_attn.proj(img_attn)
img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)
txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
# IP-adapter processing
ip_query = img_q # latent sample query
ip_key = self.ip_adapter_double_stream_k_proj(image_proj)
ip_value = self.ip_adapter_double_stream_v_proj(image_proj)
# Reshape projections for multi-head attention
ip_key = rearrange(ip_key, 'B L (H D) -> B H L D', H=attn.num_heads, D=attn.head_dim)
ip_value = rearrange(ip_value, 'B L (H D) -> B H L D', H=attn.num_heads, D=attn.head_dim)
# Compute attention between IP projections and the latent query
ip_attention = F.scaled_dot_product_attention(
ip_query,
ip_key,
ip_value,
dropout_p=0.0,
is_causal=False
)
ip_attention = rearrange(ip_attention, "B H L D -> B L (H D)", H=attn.num_heads, D=attn.head_dim)
img = img + ip_scale * ip_attention
return img, txt
class DoubleStreamBlockProcessor:
def __call__(self, attn, img, txt, vec, pe):
img_mod1, img_mod2 = attn.img_mod(vec)
txt_mod1, txt_mod2 = attn.txt_mod(vec)
# prepare image for attention
img_modulated = attn.img_norm1(img)
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift
img_qkv = attn.img_attn.qkv(img_modulated)
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
img_q, img_k = attn.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = attn.txt_norm1(txt)
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift
txt_qkv = attn.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
txt_q, txt_k = attn.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
q = torch.cat((txt_q, img_q), dim=2)
k = torch.cat((txt_k, img_k), dim=2)
v = torch.cat((txt_v, img_v), dim=2)
attn1 = attention(q, k, v, pe=pe)
txt_attn, img_attn = attn1[:, : txt.shape[1]], attn1[:, txt.shape[1] :]
# calculate the img bloks
img = img + img_mod1.gate * attn.img_attn.proj(img_attn)
img = img + img_mod2.gate * attn.img_mlp((1 + img_mod2.scale) * attn.img_norm2(img) + img_mod2.shift)
# calculate the txt bloks
txt = txt + txt_mod1.gate * attn.txt_attn.proj(txt_attn)
txt = txt + txt_mod2.gate * attn.txt_mlp((1 + txt_mod2.scale) * attn.txt_norm2(txt) + txt_mod2.shift)
return img, txt
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.head_dim = hidden_size // num_heads
self.img_mod = Modulation(hidden_size, double=True)
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.img_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
self.txt_mod = Modulation(hidden_size, double=True)
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.txt_mlp = nn.Sequential(
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
nn.GELU(approximate="tanh"),
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
)
processor = DoubleStreamBlockProcessor()
self.set_processor(processor)
def set_processor(self, processor):
self.processor = processor
def get_processor(self):
return self.processor
def forward(
self,
img: Tensor,
txt: Tensor,
vec: Tensor,
pe: Tensor,
image_proj: Tensor = None,
ip_scale: float =1.0,
):
if image_proj is None:
return self.processor(self, img, txt, vec, pe)
else:
return self.processor(self, img, txt, vec, pe, image_proj, ip_scale)
class IPSingleStreamBlockProcessor(nn.Module):
"""Attention processor for handling IP-adapter with single stream block."""
def __init__(self, context_dim, hidden_dim):
super().__init__()
if not hasattr(F, "scaled_dot_product_attention"):
raise ImportError(
"IPSingleStreamBlockProcessor requires PyTorch 2.0 or higher. Please upgrade PyTorch."
)
# Ensure context_dim matches the dimension of image_proj
self.context_dim = context_dim
self.hidden_dim = hidden_dim
# Initialize projections for IP-adapter
self.ip_adapter_single_stream_k_proj = nn.Linear(context_dim, hidden_dim, bias=False)
self.ip_adapter_single_stream_v_proj = nn.Linear(context_dim, hidden_dim, bias=False)
nn.init.zeros_(self.ip_adapter_single_stream_k_proj.weight)
nn.init.zeros_(self.ip_adapter_single_stream_v_proj.weight)
def __call__(
self,
attn: nn.Module,
x: Tensor,
vec: Tensor,
pe: Tensor,
image_proj: Tensor = None,
ip_scale: float = 1.0
):
mod, _ = attn.modulation(vec)
x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads, D=attn.head_dim)
q, k = attn.norm(q, k, v)
# compute attention
attn_1 = attention(q, k, v, pe=pe)
# IP-adapter processing
ip_query = q
ip_key = self.ip_adapter_single_stream_k_proj(image_proj)
ip_value = self.ip_adapter_single_stream_v_proj(image_proj)
# Reshape projections for multi-head attention
ip_key = rearrange(ip_key, 'B L (H D) -> B H L D', H=attn.num_heads, D=attn.head_dim)
ip_value = rearrange(ip_value, 'B L (H D) -> B H L D', H=attn.num_heads, D=attn.head_dim)
# Compute attention between IP projections and the latent query
ip_attention = F.scaled_dot_product_attention(
ip_query,
ip_key,
ip_value
)
ip_attention = rearrange(ip_attention, "B H L D -> B L (H D)")
attn_out = attn_1 + ip_scale * ip_attention
# compute activation in mlp stream, cat again and run second linear layer
output = attn.linear2(torch.cat((attn_out, attn.mlp_act(mlp)), 2))
out = x + mod.gate * output
return out
class SingleStreamBlockLoraProcessor(nn.Module):
def __init__(self, dim: int, rank: int = 4, network_alpha = None, lora_weight: float = 1):
super().__init__()
self.qkv_lora = LoRALinearLayer(dim, dim * 3, rank, network_alpha)
self.proj_lora = LoRALinearLayer(dim, dim, rank, network_alpha)
self.lora_weight = lora_weight
def __call__(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor):
mod, _ = attn.modulation(vec)
x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)
qkv = qkv + self.qkv_lora(x_mod) * self.lora_weight
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
q, k = attn.norm(q, k, v)
# compute attention
attn_1 = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2))
output = output + self.proj_lora(output) * self.lora_weight
output = x + mod.gate * output
return output
class SingleStreamBlockProcessor:
def __call__(self, attn: nn.Module, x: Tensor, vec: Tensor, pe: Tensor):
mod, _ = attn.modulation(vec)
x_mod = (1 + mod.scale) * attn.pre_norm(x) + mod.shift
qkv, mlp = torch.split(attn.linear1(x_mod), [3 * attn.hidden_size, attn.mlp_hidden_dim], dim=-1)
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=attn.num_heads)
q, k = attn.norm(q, k, v)
# compute attention
attn_1 = attention(q, k, v, pe=pe)
# compute activation in mlp stream, cat again and run second linear layer
output = attn.linear2(torch.cat((attn_1, attn.mlp_act(mlp)), 2))
output = x + mod.gate * output
return output
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
self.scale = qk_scale or self.head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
# proj and mlp_out
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
self.norm = QKNorm(self.head_dim)
self.hidden_size = hidden_size
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False)
processor = SingleStreamBlockProcessor()
self.set_processor(processor)
def set_processor(self, processor):
self.processor = processor
def get_processor(self):
return self.processor
def forward(
self,
x: Tensor,
vec: Tensor,
pe: Tensor,
image_proj: Tensor = None,
ip_scale: float = 1.0
):
if image_proj is None:
return self.processor(self, x, vec, pe)
else:
return self.processor(self, x, vec, pe, image_proj, ip_scale)
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
super().__init__()
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :]
x = self.linear(x)
return x
class ImageProjModel(torch.nn.Module):
"""Projection Model
https://github.com/tencent-ailab/IP-Adapter/blob/main/ip_adapter/ip_adapter.py#L28
"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.generator = None
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(
-1, self.clip_extra_context_tokens, self.cross_attention_dim
)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
|