Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,908 Bytes
184193d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import os
from PIL import Image
import plotly.graph_objects as go
import numpy as np
def calc_cam_cone_pts_3d(c2w, fov_deg, zoom = 1.0):
fov_rad = np.deg2rad(fov_deg)
cam_x = c2w[0, -1]
cam_y = c2w[1, -1]
cam_z = c2w[2, -1]
corn1 = [np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0), -1.0]
corn2 = [-np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0), -1.0]
corn3 = [-np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0), -1.0]
corn4 = [np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0), -1.0]
corn1 = np.dot(c2w[:3, :3], corn1)
corn2 = np.dot(c2w[:3, :3], corn2)
corn3 = np.dot(c2w[:3, :3], corn3)
corn4 = np.dot(c2w[:3, :3], corn4)
# Now attach as offset to actual 3D camera position:
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2) * zoom
corn_x1 = cam_x + corn1[0]
corn_y1 = cam_y + corn1[1]
corn_z1 = cam_z + corn1[2]
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2) * zoom
corn_x2 = cam_x + corn2[0]
corn_y2 = cam_y + corn2[1]
corn_z2 = cam_z + corn2[2]
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2) * zoom
corn_x3 = cam_x + corn3[0]
corn_y3 = cam_y + corn3[1]
corn_z3 = cam_z + corn3[2]
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2) * zoom
corn_x4 = cam_x + corn4[0]
corn_y4 = cam_y + corn4[1]
corn_z4 = cam_z + corn4[2]
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4]
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4]
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4]
return np.array([xs, ys, zs]).T
class CameraVisualizer:
def __init__(self, poses, legends, colors, images=None, mesh_path=None, pc_path=None, camera_x=1.0):
self._fig = None
self._camera_x = camera_x
self._poses = poses
self._legends = legends
self._colors = colors
self._raw_images = None
self._bit_images = None
self._image_colorscale = None
if images is not None:
self._raw_images = images
self._bit_images = []
self._image_colorscale = []
for img in images:
if img is None:
self._bit_images.append(None)
self._image_colorscale.append(None)
continue
bit_img, colorscale = self.encode_image(img)
self._bit_images.append(bit_img)
self._image_colorscale.append(colorscale)
self._mesh = None
if mesh_path is not None and os.path.exists(mesh_path):
import trimesh
self._mesh = trimesh.load(mesh_path, force='mesh')
self._pc = None
if pc_path is not None and os.path.exists(pc_path):
self._pc = np.load(pc_path)
def encode_image(self, raw_image):
'''
:param raw_image (H, W, 3) array of uint8 in [0, 255].
'''
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB')
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3))
bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None)
# bit_image = Image.fromarray(raw_image.clip(0, 254)).convert(
# 'P', palette='WEB', dither=None)
colorscale = [
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)]
return bit_image, colorscale
def update_figure(
self,
scene_bounds,
height=720,
line_width=10,
base_radius=0.0,
zoom_scale=1.0,
fov_deg=50.,
mesh_z_shift=0.0,
mesh_scale=1.0,
show_background=False,
show_grid=False,
show_ticklabels=False,
y_up=False,
):
fig = go.Figure()
for i in range(len(self._poses)):
pose = self._poses[i]
clr = np.array([self._colors[i], self._colors[i]])
legend = self._legends[i]
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)]
if isinstance(fov_deg, float) or len(fov_deg) == 1:
fov = fov_deg
else:
fov = fov_deg[i]
cone = calc_cam_cone_pts_3d(pose, fov)
radius = np.linalg.norm(pose[:3, -1])
if self._bit_images and self._bit_images[i]:
raw_image = self._raw_images[i]
bit_image = self._bit_images[i]
colorscale = self._image_colorscale[i]
(H, W, C) = raw_image.shape
z = np.zeros((H, W)) + base_radius
scale = np.linalg.norm(cone[1] - cone[2]) / 2
(x, y) = np.meshgrid(np.linspace(-scale, scale, W), np.linspace(scale, -scale, H) * H / W)
xyz = np.concatenate([x[..., None], y[..., None], z[..., None]], axis=-1)
rot_xyz = np.matmul(xyz, pose[:3, :3].T) + pose[:3, -1]
offset = cone[2] - rot_xyz[0, 0, :]
rot_xyz += offset.reshape((1, 1, 3))
x, y, z = rot_xyz[:, :, 0], rot_xyz[:, :, 1], rot_xyz[:, :, 2]
fig.add_trace(go.Surface(
x=x, y=y, z=z,
surfacecolor=bit_image,
cmin=0,
cmax=255,
colorscale=colorscale,
showscale=False,
lighting_diffuse=1.0,
lighting_ambient=1.0,
lighting_fresnel=1.0,
lighting_roughness=1.0,
# lighting_specular=0.3))
lighting_specular=0,
showlegend=False))
for (j, edge) in enumerate(edges):
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0])
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1])
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2])
fig.add_trace(go.Scatter3d(
x=[x1, x2],
y=[y1, y2],
z=[z1, z2],
mode='lines',
line=dict(color=clr, width=line_width),
showlegend=False))
# Add label.
if cone[0, 2] < 0:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False,
mode='text', text=legend, textposition='bottom center'))
else:
fig.add_trace(go.Scatter3d(
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False,
mode='text', text=legend, textposition='top center'))
# look at the center of scene
fig.update_layout(
height=height,
autosize=True,
hovermode=False,
margin=go.layout.Margin(l=0, r=0, b=0, t=0),
showlegend=True,
legend=dict(
yanchor='bottom',
y=0.01,
xanchor='right',
x=0.99,
),
scene=dict(
aspectmode='manual',
aspectratio=dict(x=1, y=1, z=1),
camera=dict(
eye=dict(x=1.5, y=1.5, z=1.0),
center=dict(x=0.0, y=0.0, z=0.0),
up=dict(x=0.0, y=0.0, z=1.0)),
xaxis_title='X',
yaxis_title='Z' if y_up else 'Y',
zaxis_title='Y' if y_up else 'Z',
xaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=show_ticklabels,
showgrid=show_grid,
zeroline=False,
showbackground=show_background,
showspikes=False,
showline=False,
ticks=''),
yaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=show_ticklabels,
showgrid=show_grid,
zeroline=False,
showbackground=show_background,
showspikes=False,
showline=False,
ticks=''),
zaxis=dict(
range=[-scene_bounds, scene_bounds],
showticklabels=show_ticklabels,
showgrid=show_grid,
zeroline=False,
showbackground=show_background,
showspikes=False,
showline=False,
ticks='')
)
)
self._fig = fig
return fig
|