File size: 11,817 Bytes
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import cv2
import math
import scipy
import numpy as np
import torch
import open3d as o3d
from tqdm import tqdm

from .camera_util import create_camera_to_world


###############################################################################
# Camera Trajectory
###############################################################################

def fibonacci_sampling_on_sphere(num_samples=1):
    points = []
    phi = np.pi * (3.0 - np.sqrt(5.0))  # golden angle in radians
    for i in range(num_samples):
        y = 1 - (i / float(num_samples - 1)) * 2  # y goes from 1 to -1
        radius = np.sqrt(1 - y * y)  # radius at y

        theta = phi * i  # golden angle increment

        x = np.cos(theta) * radius
        z = np.sin(theta) * radius

        points.append([x, y, z])
    points = np.array(points)
    return points


def get_fibonacci_cameras(N=20, radius=2.0, device='cuda'):
    def normalize_vecs(vectors): 
        return vectors / (torch.norm(vectors, dim=-1, keepdim=True))

    t = torch.linspace(0, 1, N).reshape(-1, 1)

    cam_pos = fibonacci_sampling_on_sphere(N)
    cam_pos = torch.from_numpy(cam_pos).float().to(device)
    cam_pos = cam_pos * radius

    forward_vector = normalize_vecs(-cam_pos)
    up_vector = torch.tensor([0, 0, 1], dtype=torch.float,
                                        device=device).reshape(-1).expand_as(forward_vector)
    right_vector = normalize_vecs(torch.cross(forward_vector, up_vector, dim=-1))

    up_vector = normalize_vecs(torch.cross(right_vector, forward_vector, dim=-1))
    rotate = torch.stack(
                    (right_vector, -up_vector, forward_vector), dim=-1)

    rotation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
    rotation_matrix[:, :3, :3] = rotate

    translation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
    translation_matrix[:, :3, 3] = cam_pos
    cam2world = translation_matrix @ rotation_matrix
    return cam2world


def get_circular_cameras(N=120, elevation=0, radius=2.0, normalize=True, device='cuda'):
    camera_positions = []
    for i in range(N):
        azimuth = 2 * np.pi * i / N - np.pi / 2
        x = radius * np.cos(elevation) * np.cos(azimuth)
        y = radius * np.cos(elevation) * np.sin(azimuth)
        z = radius * np.sin(elevation)
        camera_positions.append([x, y, z])
    camera_positions = np.array(camera_positions)
    camera_positions = torch.from_numpy(camera_positions).float()
    c2ws = create_camera_to_world(camera_positions, camera_system='opencv')

    if normalize:
        c2ws_first = create_camera_to_world(torch.tensor([0, -2, 0]), camera_system='opencv').unsqueeze(0)
        c2ws = torch.linalg.inv(c2ws_first) @ c2ws

    return c2ws

###############################################################################
# TSDF Fusion
###############################################################################

def rgbd_to_mesh(images, depths, c2ws, fov, mesh_path, cam_elev_thr=0):

    voxel_length = 2 * 2.0 / 512.0
    sdf_trunc = 2 * 0.02
    color_type = o3d.pipelines.integration.TSDFVolumeColorType.RGB8

    volume = o3d.pipelines.integration.ScalableTSDFVolume(
        voxel_length=voxel_length,
        sdf_trunc=sdf_trunc,
        color_type=color_type,
    )

    for i in tqdm(range(c2ws.shape[0])):
        camera_to_world = c2ws[i]
        world_to_camera = np.linalg.inv(camera_to_world)
        camera_position = camera_to_world[:3, 3]
        # camera_elevation = np.rad2deg(np.arcsin(camera_position[2]))
        camera_elevation = np.rad2deg(np.arcsin(camera_position[2] / np.linalg.norm(camera_position)))
        if camera_elevation < cam_elev_thr:
            continue
        color_image = o3d.geometry.Image(np.ascontiguousarray(images[i]))
        depth_image = o3d.geometry.Image(np.ascontiguousarray(depths[i]))
        rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
            color_image, depth_image, depth_scale=1.0, depth_trunc=4.0, convert_rgb_to_intensity=False
        )
        camera_intrinsics = o3d.camera.PinholeCameraIntrinsic()

        fx = fy =  images[i].shape[1] / 2. / np.tan(np.deg2rad(fov / 2.0))
        cx = cy = images[i].shape[1] / 2.
        h =  images[i].shape[0]
        w =  images[i].shape[1]
        camera_intrinsics.set_intrinsics(
            w, h, fx, fy, cx, cy
        )
        volume.integrate(
            rgbd_image,
            camera_intrinsics,
            world_to_camera,
        )

    fused_mesh = volume.extract_triangle_mesh()

    triangle_clusters, cluster_n_triangles, cluster_area = (
            fused_mesh.cluster_connected_triangles())
    triangle_clusters = np.asarray(triangle_clusters)
    cluster_n_triangles = np.asarray(cluster_n_triangles)
    cluster_area = np.asarray(cluster_area)

    triangles_to_remove = cluster_n_triangles[triangle_clusters] < 500
    fused_mesh.remove_triangles_by_mask(triangles_to_remove)
    fused_mesh.remove_unreferenced_vertices()

    fused_mesh = fused_mesh.filter_smooth_simple(number_of_iterations=2)
    fused_mesh = fused_mesh.compute_vertex_normals()
    o3d.io.write_triangle_mesh(mesh_path, fused_mesh)

###############################################################################
# Visualization
###############################################################################

def viewmatrix(lookdir, up, position):
    """Construct lookat view matrix."""
    vec2 = normalize(lookdir)
    vec0 = normalize(np.cross(up, vec2))
    vec1 = normalize(np.cross(vec2, vec0))
    m = np.stack([vec0, vec1, vec2, position], axis=1)
    return m


def normalize(x):
    """Normalization helper function."""
    return x / np.linalg.norm(x)


def generate_interpolated_path(poses, n_interp, spline_degree=5,
                               smoothness=.03, rot_weight=.1):
    """Creates a smooth spline path between input keyframe camera poses.

  Spline is calculated with poses in format (position, lookat-point, up-point).

  Args:
    poses: (n, 3, 4) array of input pose keyframes.
    n_interp: returned path will have n_interp * (n - 1) total poses.
    spline_degree: polynomial degree of B-spline.
    smoothness: parameter for spline smoothing, 0 forces exact interpolation.
    rot_weight: relative weighting of rotation/translation in spline solve.

  Returns:
    Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
  """

    def poses_to_points(poses, dist):
        """Converts from pose matrices to (position, lookat, up) format."""
        pos = poses[:, :3, -1]
        lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
        up = poses[:, :3, -1] + dist * poses[:, :3, 1]
        return np.stack([pos, lookat, up], 1)

    def points_to_poses(points):
        """Converts from (position, lookat, up) format to pose matrices."""
        return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])

    def interp(points, n, k, s):
        """Runs multidimensional B-spline interpolation on the input points."""
        sh = points.shape
        pts = np.reshape(points, (sh[0], -1))
        k = min(k, sh[0] - 1)
        tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
        u = np.linspace(0, 1, n, endpoint=False)
        new_points = np.array(scipy.interpolate.splev(u, tck))
        new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
        return new_points
    
    points = poses_to_points(poses, dist=rot_weight)
    new_points = interp(points,
                        n_interp * (points.shape[0] - 1),
                        k=spline_degree,
                        s=smoothness)
    return points_to_poses(new_points)

###############################################################################
# Camera Estimation
###############################################################################

def xy_grid(W, H, device=None, origin=(0, 0), unsqueeze=None, cat_dim=-1, homogeneous=False, **arange_kw):
    """ Output a (H,W,2) array of int32 
        with output[j,i,0] = i + origin[0]
             output[j,i,1] = j + origin[1]
    """
    if device is None:
        # numpy
        arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones
    else:
        # torch
        arange = lambda *a, **kw: torch.arange(*a, device=device, **kw)
        meshgrid, stack = torch.meshgrid, torch.stack
        ones = lambda *a: torch.ones(*a, device=device)

    tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)]
    grid = meshgrid(tw, th, indexing='xy')
    if homogeneous:
        grid = grid + (ones((H, W)),)
    if unsqueeze is not None:
        grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze))
    if cat_dim is not None:
        grid = stack(grid, cat_dim)
    return grid


def estimate_focal(pts3d, pp=None, mask=None, min_focal=0., max_focal=np.inf):
    """ 
    Reprojection method, for when the absolute depth is known:
    1) estimate the camera focal using a robust estimator
    2) reproject points onto true rays, minimizing a certain error
    """
    H, W, THREE = pts3d.shape
    assert THREE == 3

    if pp is None:
        pp = torch.tensor([W/2, H/2]).to(pts3d)

    # centered pixel grid
    pixels = xy_grid(W, H, device=pts3d.device).view(-1, 2) - pp.view(1, 2)  # (HW, 2)
    pts3d = pts3d.view(H*W, 3).contiguous()  # (HW, 3)

    # mask points if provided
    if mask is not None:
        mask = mask.to(pts3d.device).ravel().bool()
        assert len(mask) == pts3d.shape[0]
        pts3d = pts3d[mask]
        pixels = pixels[mask]
    
    # weiszfeld
    # init focal with l2 closed form
    # we try to find focal = argmin Sum | pixel - focal * (x,y)/z|
    xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0)  # homogeneous (x,y,1)

    dot_xy_px = (xy_over_z * pixels).sum(dim=-1)
    dot_xy_xy = xy_over_z.square().sum(dim=-1)

    focal = dot_xy_px.mean(dim=0) / dot_xy_xy.mean(dim=0)

    # iterative re-weighted least-squares
    for iter in range(10):
        # re-weighting by inverse of distance
        dis = (pixels - focal.view(-1, 1) * xy_over_z).norm(dim=-1)
        # print(dis.nanmean(-1))
        w = dis.clip(min=1e-8).reciprocal()
        # update the scaling with the new weights
        focal = (w * dot_xy_px).mean(dim=0) / (w * dot_xy_xy).mean(dim=0)

    focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2))  # size / 1.1547005383792515
    focal = focal.clip(min=min_focal*focal_base, max=max_focal*focal_base)
    return focal.ravel()


def fast_pnp(pts3d, mask, focal=None, pp=None, niter_PnP=10):
    """
    Estimate camera poses and focals with RANSAC-PnP.

    Inputs:
        pts3d:  H x W x 3
        focal:  1
        mask:   H x W
        pp
    """
    H, W, _ = pts3d.shape
    pixels = np.mgrid[:W, :H].T.astype(float)

    if focal is None:
        S = max(W, H)
        tentative_focals = np.geomspace(S/2, S*3, 21)
    else:
        tentative_focals = [focal]

    if pp is None:
        pp = (W/2, H/2)

    best = 0,
    for focal in tentative_focals:
        K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])

        success, R, T, inliers = cv2.solvePnPRansac(pts3d[mask], pixels[mask], K, None,
                                                    iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP)
        if not success:
            continue

        score = len(inliers)
        if success and score > best[0]:
            best = score, R, T, focal

    if not best[0]:
        return None

    _, R, T, best_focal = best
    R = cv2.Rodrigues(R)[0]  # world to cam
    world2cam = np.eye(4).astype(float)
    world2cam[:3, :3] = R
    world2cam[:3, 3] = T.reshape(3)
    cam2world = np.linalg.inv(world2cam)

    return best_focal, cam2world