Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,817 Bytes
184193d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import cv2
import math
import scipy
import numpy as np
import torch
import open3d as o3d
from tqdm import tqdm
from .camera_util import create_camera_to_world
###############################################################################
# Camera Trajectory
###############################################################################
def fibonacci_sampling_on_sphere(num_samples=1):
points = []
phi = np.pi * (3.0 - np.sqrt(5.0)) # golden angle in radians
for i in range(num_samples):
y = 1 - (i / float(num_samples - 1)) * 2 # y goes from 1 to -1
radius = np.sqrt(1 - y * y) # radius at y
theta = phi * i # golden angle increment
x = np.cos(theta) * radius
z = np.sin(theta) * radius
points.append([x, y, z])
points = np.array(points)
return points
def get_fibonacci_cameras(N=20, radius=2.0, device='cuda'):
def normalize_vecs(vectors):
return vectors / (torch.norm(vectors, dim=-1, keepdim=True))
t = torch.linspace(0, 1, N).reshape(-1, 1)
cam_pos = fibonacci_sampling_on_sphere(N)
cam_pos = torch.from_numpy(cam_pos).float().to(device)
cam_pos = cam_pos * radius
forward_vector = normalize_vecs(-cam_pos)
up_vector = torch.tensor([0, 0, 1], dtype=torch.float,
device=device).reshape(-1).expand_as(forward_vector)
right_vector = normalize_vecs(torch.cross(forward_vector, up_vector, dim=-1))
up_vector = normalize_vecs(torch.cross(right_vector, forward_vector, dim=-1))
rotate = torch.stack(
(right_vector, -up_vector, forward_vector), dim=-1)
rotation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
rotation_matrix[:, :3, :3] = rotate
translation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
translation_matrix[:, :3, 3] = cam_pos
cam2world = translation_matrix @ rotation_matrix
return cam2world
def get_circular_cameras(N=120, elevation=0, radius=2.0, normalize=True, device='cuda'):
camera_positions = []
for i in range(N):
azimuth = 2 * np.pi * i / N - np.pi / 2
x = radius * np.cos(elevation) * np.cos(azimuth)
y = radius * np.cos(elevation) * np.sin(azimuth)
z = radius * np.sin(elevation)
camera_positions.append([x, y, z])
camera_positions = np.array(camera_positions)
camera_positions = torch.from_numpy(camera_positions).float()
c2ws = create_camera_to_world(camera_positions, camera_system='opencv')
if normalize:
c2ws_first = create_camera_to_world(torch.tensor([0, -2, 0]), camera_system='opencv').unsqueeze(0)
c2ws = torch.linalg.inv(c2ws_first) @ c2ws
return c2ws
###############################################################################
# TSDF Fusion
###############################################################################
def rgbd_to_mesh(images, depths, c2ws, fov, mesh_path, cam_elev_thr=0):
voxel_length = 2 * 2.0 / 512.0
sdf_trunc = 2 * 0.02
color_type = o3d.pipelines.integration.TSDFVolumeColorType.RGB8
volume = o3d.pipelines.integration.ScalableTSDFVolume(
voxel_length=voxel_length,
sdf_trunc=sdf_trunc,
color_type=color_type,
)
for i in tqdm(range(c2ws.shape[0])):
camera_to_world = c2ws[i]
world_to_camera = np.linalg.inv(camera_to_world)
camera_position = camera_to_world[:3, 3]
# camera_elevation = np.rad2deg(np.arcsin(camera_position[2]))
camera_elevation = np.rad2deg(np.arcsin(camera_position[2] / np.linalg.norm(camera_position)))
if camera_elevation < cam_elev_thr:
continue
color_image = o3d.geometry.Image(np.ascontiguousarray(images[i]))
depth_image = o3d.geometry.Image(np.ascontiguousarray(depths[i]))
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
color_image, depth_image, depth_scale=1.0, depth_trunc=4.0, convert_rgb_to_intensity=False
)
camera_intrinsics = o3d.camera.PinholeCameraIntrinsic()
fx = fy = images[i].shape[1] / 2. / np.tan(np.deg2rad(fov / 2.0))
cx = cy = images[i].shape[1] / 2.
h = images[i].shape[0]
w = images[i].shape[1]
camera_intrinsics.set_intrinsics(
w, h, fx, fy, cx, cy
)
volume.integrate(
rgbd_image,
camera_intrinsics,
world_to_camera,
)
fused_mesh = volume.extract_triangle_mesh()
triangle_clusters, cluster_n_triangles, cluster_area = (
fused_mesh.cluster_connected_triangles())
triangle_clusters = np.asarray(triangle_clusters)
cluster_n_triangles = np.asarray(cluster_n_triangles)
cluster_area = np.asarray(cluster_area)
triangles_to_remove = cluster_n_triangles[triangle_clusters] < 500
fused_mesh.remove_triangles_by_mask(triangles_to_remove)
fused_mesh.remove_unreferenced_vertices()
fused_mesh = fused_mesh.filter_smooth_simple(number_of_iterations=2)
fused_mesh = fused_mesh.compute_vertex_normals()
o3d.io.write_triangle_mesh(mesh_path, fused_mesh)
###############################################################################
# Visualization
###############################################################################
def viewmatrix(lookdir, up, position):
"""Construct lookat view matrix."""
vec2 = normalize(lookdir)
vec0 = normalize(np.cross(up, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, position], axis=1)
return m
def normalize(x):
"""Normalization helper function."""
return x / np.linalg.norm(x)
def generate_interpolated_path(poses, n_interp, spline_degree=5,
smoothness=.03, rot_weight=.1):
"""Creates a smooth spline path between input keyframe camera poses.
Spline is calculated with poses in format (position, lookat-point, up-point).
Args:
poses: (n, 3, 4) array of input pose keyframes.
n_interp: returned path will have n_interp * (n - 1) total poses.
spline_degree: polynomial degree of B-spline.
smoothness: parameter for spline smoothing, 0 forces exact interpolation.
rot_weight: relative weighting of rotation/translation in spline solve.
Returns:
Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
"""
def poses_to_points(poses, dist):
"""Converts from pose matrices to (position, lookat, up) format."""
pos = poses[:, :3, -1]
lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
up = poses[:, :3, -1] + dist * poses[:, :3, 1]
return np.stack([pos, lookat, up], 1)
def points_to_poses(points):
"""Converts from (position, lookat, up) format to pose matrices."""
return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])
def interp(points, n, k, s):
"""Runs multidimensional B-spline interpolation on the input points."""
sh = points.shape
pts = np.reshape(points, (sh[0], -1))
k = min(k, sh[0] - 1)
tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
u = np.linspace(0, 1, n, endpoint=False)
new_points = np.array(scipy.interpolate.splev(u, tck))
new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
return new_points
points = poses_to_points(poses, dist=rot_weight)
new_points = interp(points,
n_interp * (points.shape[0] - 1),
k=spline_degree,
s=smoothness)
return points_to_poses(new_points)
###############################################################################
# Camera Estimation
###############################################################################
def xy_grid(W, H, device=None, origin=(0, 0), unsqueeze=None, cat_dim=-1, homogeneous=False, **arange_kw):
""" Output a (H,W,2) array of int32
with output[j,i,0] = i + origin[0]
output[j,i,1] = j + origin[1]
"""
if device is None:
# numpy
arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones
else:
# torch
arange = lambda *a, **kw: torch.arange(*a, device=device, **kw)
meshgrid, stack = torch.meshgrid, torch.stack
ones = lambda *a: torch.ones(*a, device=device)
tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)]
grid = meshgrid(tw, th, indexing='xy')
if homogeneous:
grid = grid + (ones((H, W)),)
if unsqueeze is not None:
grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze))
if cat_dim is not None:
grid = stack(grid, cat_dim)
return grid
def estimate_focal(pts3d, pp=None, mask=None, min_focal=0., max_focal=np.inf):
"""
Reprojection method, for when the absolute depth is known:
1) estimate the camera focal using a robust estimator
2) reproject points onto true rays, minimizing a certain error
"""
H, W, THREE = pts3d.shape
assert THREE == 3
if pp is None:
pp = torch.tensor([W/2, H/2]).to(pts3d)
# centered pixel grid
pixels = xy_grid(W, H, device=pts3d.device).view(-1, 2) - pp.view(1, 2) # (HW, 2)
pts3d = pts3d.view(H*W, 3).contiguous() # (HW, 3)
# mask points if provided
if mask is not None:
mask = mask.to(pts3d.device).ravel().bool()
assert len(mask) == pts3d.shape[0]
pts3d = pts3d[mask]
pixels = pixels[mask]
# weiszfeld
# init focal with l2 closed form
# we try to find focal = argmin Sum | pixel - focal * (x,y)/z|
xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0) # homogeneous (x,y,1)
dot_xy_px = (xy_over_z * pixels).sum(dim=-1)
dot_xy_xy = xy_over_z.square().sum(dim=-1)
focal = dot_xy_px.mean(dim=0) / dot_xy_xy.mean(dim=0)
# iterative re-weighted least-squares
for iter in range(10):
# re-weighting by inverse of distance
dis = (pixels - focal.view(-1, 1) * xy_over_z).norm(dim=-1)
# print(dis.nanmean(-1))
w = dis.clip(min=1e-8).reciprocal()
# update the scaling with the new weights
focal = (w * dot_xy_px).mean(dim=0) / (w * dot_xy_xy).mean(dim=0)
focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515
focal = focal.clip(min=min_focal*focal_base, max=max_focal*focal_base)
return focal.ravel()
def fast_pnp(pts3d, mask, focal=None, pp=None, niter_PnP=10):
"""
Estimate camera poses and focals with RANSAC-PnP.
Inputs:
pts3d: H x W x 3
focal: 1
mask: H x W
pp
"""
H, W, _ = pts3d.shape
pixels = np.mgrid[:W, :H].T.astype(float)
if focal is None:
S = max(W, H)
tentative_focals = np.geomspace(S/2, S*3, 21)
else:
tentative_focals = [focal]
if pp is None:
pp = (W/2, H/2)
best = 0,
for focal in tentative_focals:
K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])
success, R, T, inliers = cv2.solvePnPRansac(pts3d[mask], pixels[mask], K, None,
iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP)
if not success:
continue
score = len(inliers)
if success and score > best[0]:
best = score, R, T, focal
if not best[0]:
return None
_, R, T, best_focal = best
R = cv2.Rodrigues(R)[0] # world to cam
world2cam = np.eye(4).astype(float)
world2cam[:3, :3] = R
world2cam[:3, 3] = T.reshape(3)
cam2world = np.linalg.inv(world2cam)
return best_focal, cam2world
|