Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,714 Bytes
184193d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
"""
Gaussian Splatting.
Partially borrowed from https://github.com/graphdeco-inria/gaussian-splatting.
"""
import os
import torch
from torch import nn
import numpy as np
from diff_surfel_rasterization import (
GaussianRasterizationSettings,
GaussianRasterizer,
)
from plyfile import PlyData, PlyElement
from scipy.spatial.transform import Rotation as R
def strip_lowerdiag(L):
uncertainty = torch.zeros((L.shape[0], 6), dtype=torch.float, device=L.device)
uncertainty[:, 0] = L[:, 0, 0]
uncertainty[:, 1] = L[:, 0, 1]
uncertainty[:, 2] = L[:, 0, 2]
uncertainty[:, 3] = L[:, 1, 1]
uncertainty[:, 4] = L[:, 1, 2]
uncertainty[:, 5] = L[:, 2, 2]
return uncertainty
def strip_symmetric(sym):
return strip_lowerdiag(sym)
def build_rotation(r):
norm = torch.sqrt(
r[:, 0] * r[:, 0] + r[:, 1] * r[:, 1] + r[:, 2] * r[:, 2] + r[:, 3] * r[:, 3]
)
q = r / norm[:, None]
R = torch.zeros((q.size(0), 3, 3), device=r.device)
r = q[:, 0]
x = q[:, 1]
y = q[:, 2]
z = q[:, 3]
R[:, 0, 0] = 1 - 2 * (y * y + z * z)
R[:, 0, 1] = 2 * (x * y - r * z)
R[:, 0, 2] = 2 * (x * z + r * y)
R[:, 1, 0] = 2 * (x * y + r * z)
R[:, 1, 1] = 1 - 2 * (x * x + z * z)
R[:, 1, 2] = 2 * (y * z - r * x)
R[:, 2, 0] = 2 * (x * z - r * y)
R[:, 2, 1] = 2 * (y * z + r * x)
R[:, 2, 2] = 1 - 2 * (x * x + y * y)
return R
def build_scaling_rotation(s, r):
L = torch.zeros((s.shape[0], 3, 3), dtype=torch.float, device=s.device)
R = build_rotation(r)
L[:, 0, 0] = s[:, 0]
L[:, 1, 1] = s[:, 1]
L[:, 2, 2] = s[:, 2]
L = R @ L
return L
def depths_to_points(view, depthmap):
c2w = (view.world_view_transform.T).inverse()
W, H = view.w, view.h
ndc2pix = torch.tensor([
[W / 2, 0, 0, (W) / 2],
[0, H / 2, 0, (H) / 2],
[0, 0, 0, 1]]).float().cuda().T
projection_matrix = c2w.T @ view.full_proj_transform
intrins = (projection_matrix @ ndc2pix)[:3,:3].T
grid_x, grid_y = torch.meshgrid(torch.arange(W, device='cuda').float(), torch.arange(H, device='cuda').float(), indexing='xy')
points = torch.stack([grid_x, grid_y, torch.ones_like(grid_x)], dim=-1).reshape(-1, 3)
rays_d = points @ intrins.inverse().T @ c2w[:3,:3].T
rays_o = c2w[:3,3]
points = depthmap.reshape(-1, 1) * rays_d + rays_o
return points
def depth_to_normal(view, depth):
"""
view: view camera
depth: depthmap
"""
points = depths_to_points(view, depth).reshape(*depth.shape[1:], 3)
output = torch.zeros_like(points)
dx = torch.cat([points[2:, 1:-1] - points[:-2, 1:-1]], dim=0)
dy = torch.cat([points[1:-1, 2:] - points[1:-1, :-2]], dim=1)
normal_map = torch.nn.functional.normalize(torch.cross(dx, dy, dim=-1), dim=-1)
output[1:-1, 1:-1, :] = normal_map
return output
class Camera(nn.Module):
def __init__(self, C2W, fxfycxcy, h, w):
"""
C2W: 4x4 camera-to-world matrix; opencv convention
fxfycxcy: 4
"""
super().__init__()
self.C2W = C2W.float()
self.W2C = self.C2W.inverse()
self.znear = 0.01
self.zfar = 100.0
self.h = h
self.w = w
fx, fy, cx, cy = fxfycxcy[0], fxfycxcy[1], fxfycxcy[2], fxfycxcy[3]
self.tanfovX = 1 / (2 * fx)
self.tanfovY = 1 / (2 * fy)
self.fovX = 2 * torch.atan(self.tanfovX)
self.fovY = 2 * torch.atan(self.tanfovY)
self.shiftX = 2 * cx - 1
self.shiftY = 2 * cy - 1
def getProjectionMatrix(znear, zfar, fovX, fovY, shiftX, shiftY):
tanHalfFovY = torch.tan((fovY / 2))
tanHalfFovX = torch.tan((fovX / 2))
top = tanHalfFovY * znear
bottom = -top
right = tanHalfFovX * znear
left = -right
P = torch.zeros(4, 4, dtype=torch.float32, device=fovX.device)
z_sign = 1.0
P[0, 0] = 2.0 * znear / (right - left)
P[1, 1] = 2.0 * znear / (top - bottom)
P[0, 2] = (right + left) / (right - left) + shiftX
P[1, 2] = (top + bottom) / (top - bottom) + shiftY
P[3, 2] = z_sign
P[2, 2] = z_sign * zfar / (zfar - znear)
P[2, 3] = -(zfar * znear) / (zfar - znear)
return P
self.world_view_transform = self.W2C.transpose(0, 1)
self.projection_matrix = getProjectionMatrix(
znear=self.znear, zfar=self.zfar, fovX=self.fovX, fovY=self.fovY, shiftX=self.shiftX, shiftY=self.shiftY
).transpose(0, 1)
self.full_proj_transform = (
self.world_view_transform.unsqueeze(0).bmm(
self.projection_matrix.unsqueeze(0)
)
).squeeze(0)
self.camera_center = self.C2W[:3, 3]
class GaussianModel:
def setup_functions(self, scaling_activation_type='sigmoid', scale_min_act=0.001, scale_max_act=0.3, scale_multi_act=0.1):
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation):
L = build_scaling_rotation(scaling_modifier * scaling, rotation)
actual_covariance = L @ L.transpose(1, 2)
symm = strip_symmetric(actual_covariance)
return symm
if scaling_activation_type == 'exp':
self.scaling_activation = torch.exp
elif scaling_activation_type == 'softplus':
self.scaling_activation = torch.nn.functional.softplus
self.scale_multi_act = scale_multi_act
elif scaling_activation_type == 'sigmoid':
self.scale_min_act = scale_min_act
self.scale_max_act = scale_max_act
self.scaling_activation = torch.sigmoid
else:
raise NotImplementedError
self.scaling_activation_type = scaling_activation_type
self.rotation_activation = torch.nn.functional.normalize
self.opacity_activation = torch.sigmoid
self.feature_activation = torch.sigmoid
self.covariance_activation = build_covariance_from_scaling_rotation
def __init__(self, sh_degree: int, scaling_activation_type='exp', scale_min_act=0.001, scale_max_act=0.3, scale_multi_act=0.1):
self.sh_degree = sh_degree
self._xyz = torch.empty(0)
self._features_dc = torch.empty(0)
if self.sh_degree > 0:
self._features_rest = torch.empty(0)
else:
self._features_rest = None
self._scaling = torch.empty(0)
self._rotation = torch.empty(0)
self._opacity = torch.empty(0)
self.setup_functions(scaling_activation_type=scaling_activation_type, scale_min_act=scale_min_act, scale_max_act=scale_max_act, scale_multi_act=scale_multi_act)
def set_data(self, xyz, features, scaling, rotation, opacity):
self._xyz = xyz
self._features_dc = features[:, 0, :].contiguous() if self.sh_degree == 0 else features[:, 0:1, :].contiguous()
if self.sh_degree > 0:
self._features_rest = features[:, 1:, :].contiguous()
else:
self._features_rest = None
self._scaling = scaling
self._rotation = rotation
self._opacity = opacity
return self
def to(self, device):
self._xyz = self._xyz.to(device)
self._features_dc = self._features_dc.to(device)
if self.sh_degree > 0:
self._features_rest = self._features_rest.to(device)
self._scaling = self._scaling.to(device)
self._rotation = self._rotation.to(device)
self._opacity = self._opacity.to(device)
return self
@property
def get_scaling(self):
if self.scaling_activation_type == 'exp':
scales = self.scaling_activation(self._scaling)
elif self.scaling_activation_type == 'softplus':
scales = self.scaling_activation(self._scaling) * self.scale_multi_act
elif self.scaling_activation_type == 'sigmoid':
scales = self.scale_min_act + (self.scale_max_act - self.scale_min_act) * self.scaling_activation(self._scaling)
return scales
@property
def get_rotation(self):
return self.rotation_activation(self._rotation)
@property
def get_xyz(self):
return self._xyz
@property
def get_features(self):
if self.sh_degree > 0:
features_dc = self._features_dc
features_rest = self._features_rest
return torch.cat((features_dc, features_rest), dim=1)
else:
return self.feature_activation(self._features_dc)
@property
def get_opacity(self):
return self.opacity_activation(self._opacity)
def get_covariance(self, scaling_modifier=1):
return self.covariance_activation(
self.get_scaling, scaling_modifier, self._rotation
)
def construct_list_of_attributes(self, num_rest=0):
l = ['x', 'y', 'z']
# All channels except the 3 DC
for i in range(3):
l.append('f_dc_{}'.format(i))
for i in range(num_rest):
l.append('f_rest_{}'.format(i))
l.append('opacity')
for i in range(self._scaling.shape[1]):
l.append('scale_{}'.format(i))
for i in range(self._rotation.shape[1]):
l.append('rot_{}'.format(i))
return l
def save_ply_vis(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
xyzs = self._xyz.detach().cpu().numpy()
f_dc = self._features_dc.detach().flatten(start_dim=1).contiguous().cpu().numpy()
opacities = self._opacity.detach().cpu().numpy()
scales = torch.log(self.get_scaling)
scales = scales.detach().cpu().numpy()
rot_mat_vis = np.array([[1, 0, 0], [0, 0, -1], [0, 1, 0]])
xyzs = xyzs @ rot_mat_vis.T
rotations = self._rotation.detach().cpu().numpy()
rotations = R.from_quat(rotations[:, [1,2,3,0]]).as_matrix()
rotations = rot_mat_vis @ rotations
rotations = R.from_matrix(rotations).as_quat()[:, [3,0,1,2]]
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes(0)]
elements = np.empty(xyzs.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyzs, f_dc, opacities, scales, rotations), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, 'vertex')
PlyData([el]).write(path)
def save_ply(self, path):
os.makedirs(os.path.dirname(path), exist_ok=True)
xyzs = self._xyz.detach().cpu().numpy()
f_dc = self._features_dc.detach().flatten(start_dim=1).contiguous().cpu().numpy()
if self.sh_degree > 0:
f_rest = self._features_rest.detach().flatten(start_dim=1).contiguous().cpu().numpy()
else:
f_rest = np.zeros((f_dc.shape[0], 0), dtype=f_dc.dtype)
opacities = self._opacity.detach().cpu().numpy()
scales = torch.log(self.get_scaling)
scales = scales.detach().cpu().numpy()
rotations = self._rotation.detach().cpu().numpy()
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes(f_rest.shape[-1])]
elements = np.empty(xyzs.shape[0], dtype=dtype_full)
attributes = np.concatenate((xyzs, f_dc, f_rest, opacities, scales, rotations), axis=1)
elements[:] = list(map(tuple, attributes))
el = PlyElement.describe(elements, "vertex")
PlyData([el]).write(path)
# def load_ply(self, path):
# plydata = PlyData.read(path)
# xyz = np.stack((np.asarray(plydata.elements[0]["x"]),
# np.asarray(plydata.elements[0]["y"]),
# np.asarray(plydata.elements[0]["z"])), axis=1)
# opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis]
# features_dc = np.zeros((xyz.shape[0], 3, 1))
# features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"])
# features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"])
# features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"])
# scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")]
# scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1]))
# scales = np.zeros((xyz.shape[0], len(scale_names)))
# for idx, attr_name in enumerate(scale_names):
# scales[:, idx] = np.asarray(plydata.elements[0][attr_name])
# rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")]
# rot_names = sorted(rot_names, key=lambda x: int(x.split("_")[-1]))
# rots = np.zeros((xyz.shape[0], len(rot_names)))
# for idx, attr_name in enumerate(rot_names):
# rots[:, idx] = np.asarray(plydata.elements[0][attr_name])
# self._xyz = torch.from_numpy(xyz.astype(np.float32))
# self._features_dc = torch.from_numpy(features_dc.astype(np.float32)).transpose(1, 2).contiguous()
# self._opacity = torch.from_numpy(opacities.astype(np.float32)).contiguous()
# self._scaling = torch.from_numpy(scales.astype(np.float32)).contiguous()
# self._rotation = torch.from_numpy(rots.astype(np.float32)).contiguous()
def render(
pc: GaussianModel,
height: int,
width: int,
C2W: torch.Tensor,
fxfycxcy: torch.Tensor,
bg_color=(1.0, 1.0, 1.0),
scaling_modifier=1.0,
):
"""
Render the scene.
"""
screenspace_points = (
torch.zeros_like(
pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda"
)
+ 0
)
try:
screenspace_points.retain_grad()
except:
pass
viewpoint_camera = Camera(C2W=C2W, fxfycxcy=fxfycxcy, h=height, w=width)
bg_color = torch.tensor(list(bg_color), dtype=torch.float32, device=C2W.device)
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.h),
image_width=int(viewpoint_camera.w),
tanfovx=viewpoint_camera.tanfovX,
tanfovy=viewpoint_camera.tanfovY,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform,
sh_degree=pc.sh_degree,
campos=viewpoint_camera.camera_center,
prefiltered=False,
debug=False,
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
means3D = pc.get_xyz
means2D = screenspace_points
opacity = pc.get_opacity
scales = pc.get_scaling
rotations = pc.get_rotation
shs = pc.get_features
rendered_image, _, allmap = rasterizer(
means3D=means3D,
means2D=means2D,
shs=None if pc.sh_degree == 0 else shs,
colors_precomp=shs if pc.sh_degree == 0 else None,
opacities=opacity,
scales=scales,
rotations=rotations,
cov3D_precomp=None,
)
# additional regularizations
render_alpha = allmap[1:2]
# get normal map
# transform normal from view space to world space
render_normal = allmap[2:5]
render_normal = (render_normal.permute(1, 2, 0) @ (viewpoint_camera.world_view_transform[:3, :3].T)).permute(2, 0, 1)
# get median depth map
render_depth_median = allmap[5:6]
render_depth_median = torch.nan_to_num(render_depth_median, 0, 0)
# get expected depth map
render_depth_expected = allmap[0:1]
render_depth_expected = (render_depth_expected / render_alpha)
render_depth_expected = torch.nan_to_num(render_depth_expected, 0, 0)
# get depth distortion map
render_dist = allmap[6:7]
# psedo surface attributes
# surf depth is either median or expected by setting depth_ratio to 1 or 0
# for bounded scene, use median depth, i.e., depth_ratio = 1;
# for unbounded scene, use expected depth, i.e., depth_ration = 0, to reduce disk anliasing.
depth_ratio = 0.0
surf_depth = render_depth_expected * (1 - depth_ratio) + depth_ratio * render_depth_median
# assume the depth points form the 'surface' and generate psudo surface normal for regularizations.
surf_normal = depth_to_normal(viewpoint_camera, surf_depth)
surf_normal = surf_normal.permute(2, 0, 1)
# remember to multiply with accum_alpha since render_normal is unnormalized.
surf_normal = surf_normal * (render_alpha).detach()
return {
"render": rendered_image,
"depth": surf_depth,
"alpha": render_alpha,
'surf_normal': surf_normal,
'rend_normal': render_normal,
'dist': render_dist,
}
|