File size: 5,031 Bytes
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import importlib
import imageio
import torch
import numpy as np
import PIL.Image
from PIL import Image
from typing import Any
from torchvision import transforms


def instantiate_from_config(config):
    if not "target" in config:
        if config == '__is_first_stage__':
            return None
        elif config == "__is_unconditional__":
            return None
        raise KeyError("Expected key `target` to instantiate.")
    return get_obj_from_str(config["target"])(**config.get("params", dict()))


def get_obj_from_str(string, reload=False):
    module, cls = string.rsplit(".", 1)
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


# def resize_without_crop(pil_image, target_width, target_height):
#     resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
#     return np.array(resized_image)[:, :, :3]


# @torch.inference_mode()
# def numpy2pytorch(imgs):
#     h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 255.0 * 2.0 - 1.0
#     h = h.movedim(-1, 1)
#     return h


# @torch.inference_mode()
# def remove_background(
#     image: PIL.Image.Image,
#     rembg: Any = None,
#     force: bool = False,
#     **rembg_kwargs,
# ) -> PIL.Image.Image:
#     do_remove = True
#     if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
#         do_remove = False
#     do_remove = do_remove or force
#     if do_remove:
#         W, H = image.size
#         k = (256.0 / float(H * W)) ** 0.5
#         feed = resize_without_crop(image, int(64 * round(W * k)), int(64 * round(H * k)))
#         feed = numpy2pytorch([feed]).to(device=rembg.device, dtype=torch.float32)
#         alpha = rembg(feed)[0][0]
#         alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
#         alpha = alpha.squeeze().clamp(0, 1)
#         alpha = (alpha * 255).cpu().data.numpy().astype(np.uint8)
#         alpha = Image.fromarray(alpha)

#         no_bg_image = Image.new("RGBA", alpha.size, (0, 0, 0, 0))
#         no_bg_image.paste(image, mask=alpha)
#         image = no_bg_image
#     return image


@torch.inference_mode()
def remove_background(
    image: PIL.Image.Image,
    rembg: Any = None,
    force: bool = False,
    **rembg_kwargs,
) -> PIL.Image.Image:
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        transform_image = transforms.Compose([
            transforms.Resize((1024, 1024)),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
        ])
        image = image.convert('RGB')
        input_images = transform_image(image).unsqueeze(0).to(rembg.device)
        with torch.no_grad():
            preds = rembg(input_images)[-1].sigmoid().cpu()
        pred = preds[0].squeeze()
        pred_pil = transforms.ToPILImage()(pred)
        mask = pred_pil.resize(image.size)
        image.putalpha(mask)
    return image


def resize_foreground(
    image: PIL.Image.Image,
    ratio: float,
) -> PIL.Image.Image:
    image = np.array(image)
    assert image.shape[-1] == 4
    alpha = np.where(image[..., 3] > 0)
    y1, y2, x1, x2 = (
        alpha[0].min(),
        alpha[0].max(),
        alpha[1].min(),
        alpha[1].max(),
    )
    # crop the foreground
    fg = image[y1:y2, x1:x2]
    # pad to square
    size = max(fg.shape[0], fg.shape[1])
    ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
    ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
    new_image = np.pad(
        fg,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )

    # compute padding according to the ratio
    new_size = int(new_image.shape[0] / ratio)
    # pad to size, double side
    ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
    ph1, pw1 = new_size - size - ph0, new_size - size - pw0
    new_image = np.pad(
        new_image,
        ((ph0, ph1), (pw0, pw1), (0, 0)),
        mode="constant",
        constant_values=((0, 0), (0, 0), (0, 0)),
    )
    new_image = Image.fromarray(new_image)
    return new_image


def rgba_to_white_background(image: PIL.Image.Image) -> torch.Tensor:
    image = np.asarray(image, dtype=np.float32) / 255.0
    image = torch.from_numpy(image).movedim(2, 0).float()
    image, alpha = image.split([3, 1], dim=0)
    image = image * alpha + torch.ones_like(image) * (1 - alpha)
    return image, alpha


def save_video(
    frames: torch.Tensor,
    output_path: str,
    fps: int = 30,
) -> None:
    # images: (N, C, H, W)
    frames = [(frame.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) for frame in frames]
    writer = imageio.get_writer(output_path, mode='I', fps=fps, codec='libx264')
    for frame in frames:
        writer.append_data(frame)
    writer.close()