File size: 7,550 Bytes
184193d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn.functional as F
from einops import rearrange


# --- Intrinsics Transformations ---

def normalize_intrinsics(intrinsics, image_shape):
    '''Normalize an intrinsics matrix given the image shape'''
    intrinsics = intrinsics.clone()
    intrinsics[..., 0, :] /= image_shape[1]
    intrinsics[..., 1, :] /= image_shape[0]
    return intrinsics


def unnormalize_intrinsics(intrinsics, image_shape):
    '''Unnormalize an intrinsics matrix given the image shape'''
    intrinsics = intrinsics.clone()
    intrinsics[..., 0, :] *= image_shape[1]
    intrinsics[..., 1, :] *= image_shape[0]
    return intrinsics


# --- Projections ---

def homogenize_points(points):
    """Append a '1' along the final dimension of the tensor (i.e. convert xyz->xyz1)"""
    return torch.cat([points, torch.ones_like(points[..., :1])], dim=-1)


def normalize_homogenous_points(points):
    """Normalize the point vectors"""
    return points / points[..., -1:]


def pixel_space_to_camera_space(pixel_space_points, depth, intrinsics):
    """
    Convert pixel space points to camera space points.

    Args:
        pixel_space_points (torch.Tensor): Pixel space points with shape (h, w, 2)
        depth (torch.Tensor): Depth map with shape (b, v, h, w, 1)
        intrinsics (torch.Tensor): Camera intrinsics with shape (b, v, 3, 3)

    Returns:
        torch.Tensor: Camera space points with shape (b, v, h, w, 3).
    """
    pixel_space_points = homogenize_points(pixel_space_points)
    camera_space_points = torch.einsum('b v i j , h w j -> b v h w i', intrinsics.inverse(), pixel_space_points)
    camera_space_points = camera_space_points * depth
    return camera_space_points


def camera_space_to_world_space(camera_space_points, c2w):
    """
    Convert camera space points to world space points.

    Args:
        camera_space_points (torch.Tensor): Camera space points with shape (b, v, h, w, 3)
        c2w (torch.Tensor): Camera to world extrinsics matrix with shape (b, v, 4, 4)

    Returns:
        torch.Tensor: World space points with shape (b, v, h, w, 3).
    """
    camera_space_points = homogenize_points(camera_space_points)
    world_space_points = torch.einsum('b v i j , b v h w j -> b v h w i', c2w, camera_space_points)
    return world_space_points[..., :3]


def camera_space_to_pixel_space(camera_space_points, intrinsics):
    """
    Convert camera space points to pixel space points.

    Args:
        camera_space_points (torch.Tensor): Camera space points with shape (b, v1, v2, h, w, 3)
        c2w (torch.Tensor): Camera to world extrinsics matrix with shape (b, v2, 3, 3)

    Returns:
        torch.Tensor: World space points with shape (b, v1, v2, h, w, 2).
    """
    camera_space_points = normalize_homogenous_points(camera_space_points)
    pixel_space_points = torch.einsum('b u i j , b v u h w j -> b v u h w i', intrinsics, camera_space_points)
    return pixel_space_points[..., :2]


def world_space_to_camera_space(world_space_points, c2w):
    """
    Convert world space points to pixel space points.

    Args:
        world_space_points (torch.Tensor): World space points with shape (b, v1, h, w, 3)
        c2w (torch.Tensor): Camera to world extrinsics matrix with shape (b, v2, 4, 4)

    Returns:
        torch.Tensor: Camera space points with shape (b, v1, v2, h, w, 3).
    """
    world_space_points = homogenize_points(world_space_points)
    camera_space_points = torch.einsum('b u i j , b v h w j -> b v u h w i', c2w.inverse(), world_space_points)
    return camera_space_points[..., :3]


def unproject_depth(depth, intrinsics, c2w):
    """
    Turn the depth map into a 3D point cloud in world space

    Args:
        depth: (b, v, h, w, 1)
        intrinsics: (b, v, 3, 3)
        c2w: (b, v, 4, 4)

    Returns:
        torch.Tensor: World space points with shape (b, v, h, w, 3).
    """

    # Compute indices of pixels
    h, w = depth.shape[-3], depth.shape[-2]
    x_grid, y_grid = torch.meshgrid(
        torch.arange(w, device=depth.device, dtype=torch.float32),
        torch.arange(h, device=depth.device, dtype=torch.float32),
        indexing='xy'
    )  # (h, w), (h, w)

    # Compute coordinates of pixels in camera space
    pixel_space_points = torch.stack((x_grid, y_grid), dim=-1)  # (..., h, w, 2)
    camera_points = pixel_space_to_camera_space(pixel_space_points, depth, intrinsics)  # (..., h, w, 3)

    # Convert points to world space
    world_points = camera_space_to_world_space(camera_points, c2w)  # (..., h, w, 3)

    return world_points


@torch.no_grad()
def calculate_in_frustum_mask(depth_1, intrinsics_1, c2w_1, depth_2, intrinsics_2, c2w_2, depth_tolerance=1e-1):
    """
    A function that takes in the depth, intrinsics and c2w matrices of two sets
    of views, and then works out which of the pixels in the first set of views
    has a direct corresponding pixel in any of views in the second set

    Args:
        depth_1: (b, v1, h, w)
        intrinsics_1: (b, v1, 3, 3)
        c2w_1: (b, v1, 4, 4)
        depth_2: (b, v2, h, w)
        intrinsics_2: (b, v2, 3, 3)
        c2w_2: (b, v2, 4, 4)

    Returns:
        torch.Tensor: Mask with shape (b, v1, h, w).
    """

    _, v1, h, w = depth_1.shape
    _, v2, _, _ = depth_2.shape

    # unnormalize intrinsics if needed
    if intrinsics_1[0, 0, 0, 2] < 1:
        intrinsics_1 = unnormalize_intrinsics(intrinsics_1, (h, w))
    if intrinsics_2[0, 0, 0, 2] < 1:
        intrinsics_2 = unnormalize_intrinsics(intrinsics_2, (h, w))

    # Unproject the depth to get the 3D points in world space
    points_3d = unproject_depth(depth_1[..., None], intrinsics_1, c2w_1)  # (b, v1, h, w, 3)

    # Project the 3D points into the pixel space of all the second views simultaneously
    camera_points = world_space_to_camera_space(points_3d, c2w_2)  # (b, v1, v2, h, w, 3)
    points_2d = camera_space_to_pixel_space(camera_points, intrinsics_2)  # (b, v1, v2, h, w, 2)

    # Calculate the depth of each point
    rendered_depth = camera_points[..., 2]  # (b, v1, v2, h, w)

    # We use three conditions to determine if a point should be masked

    # Condition 1: Check if the points are in the frustum of any of the v2 views
    in_frustum_mask = (
        (points_2d[..., 0] > 0) &
        (points_2d[..., 0] < w) &
        (points_2d[..., 1] > 0) &
        (points_2d[..., 1] < h)
    )  # (b, v1, v2, h, w)
    in_frustum_mask = in_frustum_mask.any(dim=-3)  # (b, v1, h, w)

    # Condition 2: Check if the points have non-zero (i.e. valid) depth in the input view
    non_zero_depth = depth_1 > 1e-6

    # Condition 3: Check if the points have matching depth to any of the v2
    # views F.grid_sample expects the input coordinates to
    # be normalized to the range [-1, 1], so we normalize first
    points_2d[..., 0] /= w
    points_2d[..., 1] /= h
    points_2d = points_2d * 2 - 1
    matching_depth = torch.ones_like(rendered_depth, dtype=torch.bool)
    for b in range(depth_1.shape[0]):
        for i in range(v1):
            for j in range(v2):
                depth = rearrange(depth_2[b, j], 'h w -> 1 1 h w')
                coords = rearrange(points_2d[b, i, j], 'h w c -> 1 h w c')
                sampled_depths = F.grid_sample(depth, coords, align_corners=False)[0, 0]
                matching_depth[b, i, j] = torch.isclose(rendered_depth[b, i, j], sampled_depths, atol=depth_tolerance)

    matching_depth = matching_depth.any(dim=-3)  # (..., v1, h, w)

    mask = in_frustum_mask & non_zero_depth & matching_depth
    return mask