bluestyle97's picture
Upload 147 files
184193d verified
raw
history blame
11.8 kB
import cv2
import math
import scipy
import numpy as np
import torch
import open3d as o3d
from tqdm import tqdm
from .camera_util import create_camera_to_world
###############################################################################
# Camera Trajectory
###############################################################################
def fibonacci_sampling_on_sphere(num_samples=1):
points = []
phi = np.pi * (3.0 - np.sqrt(5.0)) # golden angle in radians
for i in range(num_samples):
y = 1 - (i / float(num_samples - 1)) * 2 # y goes from 1 to -1
radius = np.sqrt(1 - y * y) # radius at y
theta = phi * i # golden angle increment
x = np.cos(theta) * radius
z = np.sin(theta) * radius
points.append([x, y, z])
points = np.array(points)
return points
def get_fibonacci_cameras(N=20, radius=2.0, device='cuda'):
def normalize_vecs(vectors):
return vectors / (torch.norm(vectors, dim=-1, keepdim=True))
t = torch.linspace(0, 1, N).reshape(-1, 1)
cam_pos = fibonacci_sampling_on_sphere(N)
cam_pos = torch.from_numpy(cam_pos).float().to(device)
cam_pos = cam_pos * radius
forward_vector = normalize_vecs(-cam_pos)
up_vector = torch.tensor([0, 0, 1], dtype=torch.float,
device=device).reshape(-1).expand_as(forward_vector)
right_vector = normalize_vecs(torch.cross(forward_vector, up_vector, dim=-1))
up_vector = normalize_vecs(torch.cross(right_vector, forward_vector, dim=-1))
rotate = torch.stack(
(right_vector, -up_vector, forward_vector), dim=-1)
rotation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
rotation_matrix[:, :3, :3] = rotate
translation_matrix = torch.eye(4, device=device).unsqueeze(0).repeat(forward_vector.shape[0], 1, 1)
translation_matrix[:, :3, 3] = cam_pos
cam2world = translation_matrix @ rotation_matrix
return cam2world
def get_circular_cameras(N=120, elevation=0, radius=2.0, normalize=True, device='cuda'):
camera_positions = []
for i in range(N):
azimuth = 2 * np.pi * i / N - np.pi / 2
x = radius * np.cos(elevation) * np.cos(azimuth)
y = radius * np.cos(elevation) * np.sin(azimuth)
z = radius * np.sin(elevation)
camera_positions.append([x, y, z])
camera_positions = np.array(camera_positions)
camera_positions = torch.from_numpy(camera_positions).float()
c2ws = create_camera_to_world(camera_positions, camera_system='opencv')
if normalize:
c2ws_first = create_camera_to_world(torch.tensor([0, -2, 0]), camera_system='opencv').unsqueeze(0)
c2ws = torch.linalg.inv(c2ws_first) @ c2ws
return c2ws
###############################################################################
# TSDF Fusion
###############################################################################
def rgbd_to_mesh(images, depths, c2ws, fov, mesh_path, cam_elev_thr=0):
voxel_length = 2 * 2.0 / 512.0
sdf_trunc = 2 * 0.02
color_type = o3d.pipelines.integration.TSDFVolumeColorType.RGB8
volume = o3d.pipelines.integration.ScalableTSDFVolume(
voxel_length=voxel_length,
sdf_trunc=sdf_trunc,
color_type=color_type,
)
for i in tqdm(range(c2ws.shape[0])):
camera_to_world = c2ws[i]
world_to_camera = np.linalg.inv(camera_to_world)
camera_position = camera_to_world[:3, 3]
# camera_elevation = np.rad2deg(np.arcsin(camera_position[2]))
camera_elevation = np.rad2deg(np.arcsin(camera_position[2] / np.linalg.norm(camera_position)))
if camera_elevation < cam_elev_thr:
continue
color_image = o3d.geometry.Image(np.ascontiguousarray(images[i]))
depth_image = o3d.geometry.Image(np.ascontiguousarray(depths[i]))
rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
color_image, depth_image, depth_scale=1.0, depth_trunc=4.0, convert_rgb_to_intensity=False
)
camera_intrinsics = o3d.camera.PinholeCameraIntrinsic()
fx = fy = images[i].shape[1] / 2. / np.tan(np.deg2rad(fov / 2.0))
cx = cy = images[i].shape[1] / 2.
h = images[i].shape[0]
w = images[i].shape[1]
camera_intrinsics.set_intrinsics(
w, h, fx, fy, cx, cy
)
volume.integrate(
rgbd_image,
camera_intrinsics,
world_to_camera,
)
fused_mesh = volume.extract_triangle_mesh()
triangle_clusters, cluster_n_triangles, cluster_area = (
fused_mesh.cluster_connected_triangles())
triangle_clusters = np.asarray(triangle_clusters)
cluster_n_triangles = np.asarray(cluster_n_triangles)
cluster_area = np.asarray(cluster_area)
triangles_to_remove = cluster_n_triangles[triangle_clusters] < 500
fused_mesh.remove_triangles_by_mask(triangles_to_remove)
fused_mesh.remove_unreferenced_vertices()
fused_mesh = fused_mesh.filter_smooth_simple(number_of_iterations=2)
fused_mesh = fused_mesh.compute_vertex_normals()
o3d.io.write_triangle_mesh(mesh_path, fused_mesh)
###############################################################################
# Visualization
###############################################################################
def viewmatrix(lookdir, up, position):
"""Construct lookat view matrix."""
vec2 = normalize(lookdir)
vec0 = normalize(np.cross(up, vec2))
vec1 = normalize(np.cross(vec2, vec0))
m = np.stack([vec0, vec1, vec2, position], axis=1)
return m
def normalize(x):
"""Normalization helper function."""
return x / np.linalg.norm(x)
def generate_interpolated_path(poses, n_interp, spline_degree=5,
smoothness=.03, rot_weight=.1):
"""Creates a smooth spline path between input keyframe camera poses.
Spline is calculated with poses in format (position, lookat-point, up-point).
Args:
poses: (n, 3, 4) array of input pose keyframes.
n_interp: returned path will have n_interp * (n - 1) total poses.
spline_degree: polynomial degree of B-spline.
smoothness: parameter for spline smoothing, 0 forces exact interpolation.
rot_weight: relative weighting of rotation/translation in spline solve.
Returns:
Array of new camera poses with shape (n_interp * (n - 1), 3, 4).
"""
def poses_to_points(poses, dist):
"""Converts from pose matrices to (position, lookat, up) format."""
pos = poses[:, :3, -1]
lookat = poses[:, :3, -1] - dist * poses[:, :3, 2]
up = poses[:, :3, -1] + dist * poses[:, :3, 1]
return np.stack([pos, lookat, up], 1)
def points_to_poses(points):
"""Converts from (position, lookat, up) format to pose matrices."""
return np.array([viewmatrix(p - l, u - p, p) for p, l, u in points])
def interp(points, n, k, s):
"""Runs multidimensional B-spline interpolation on the input points."""
sh = points.shape
pts = np.reshape(points, (sh[0], -1))
k = min(k, sh[0] - 1)
tck, _ = scipy.interpolate.splprep(pts.T, k=k, s=s)
u = np.linspace(0, 1, n, endpoint=False)
new_points = np.array(scipy.interpolate.splev(u, tck))
new_points = np.reshape(new_points.T, (n, sh[1], sh[2]))
return new_points
points = poses_to_points(poses, dist=rot_weight)
new_points = interp(points,
n_interp * (points.shape[0] - 1),
k=spline_degree,
s=smoothness)
return points_to_poses(new_points)
###############################################################################
# Camera Estimation
###############################################################################
def xy_grid(W, H, device=None, origin=(0, 0), unsqueeze=None, cat_dim=-1, homogeneous=False, **arange_kw):
""" Output a (H,W,2) array of int32
with output[j,i,0] = i + origin[0]
output[j,i,1] = j + origin[1]
"""
if device is None:
# numpy
arange, meshgrid, stack, ones = np.arange, np.meshgrid, np.stack, np.ones
else:
# torch
arange = lambda *a, **kw: torch.arange(*a, device=device, **kw)
meshgrid, stack = torch.meshgrid, torch.stack
ones = lambda *a: torch.ones(*a, device=device)
tw, th = [arange(o, o + s, **arange_kw) for s, o in zip((W, H), origin)]
grid = meshgrid(tw, th, indexing='xy')
if homogeneous:
grid = grid + (ones((H, W)),)
if unsqueeze is not None:
grid = (grid[0].unsqueeze(unsqueeze), grid[1].unsqueeze(unsqueeze))
if cat_dim is not None:
grid = stack(grid, cat_dim)
return grid
def estimate_focal(pts3d, pp=None, mask=None, min_focal=0., max_focal=np.inf):
"""
Reprojection method, for when the absolute depth is known:
1) estimate the camera focal using a robust estimator
2) reproject points onto true rays, minimizing a certain error
"""
H, W, THREE = pts3d.shape
assert THREE == 3
if pp is None:
pp = torch.tensor([W/2, H/2]).to(pts3d)
# centered pixel grid
pixels = xy_grid(W, H, device=pts3d.device).view(-1, 2) - pp.view(1, 2) # (HW, 2)
pts3d = pts3d.view(H*W, 3).contiguous() # (HW, 3)
# mask points if provided
if mask is not None:
mask = mask.to(pts3d.device).ravel().bool()
assert len(mask) == pts3d.shape[0]
pts3d = pts3d[mask]
pixels = pixels[mask]
# weiszfeld
# init focal with l2 closed form
# we try to find focal = argmin Sum | pixel - focal * (x,y)/z|
xy_over_z = (pts3d[..., :2] / pts3d[..., 2:3]).nan_to_num(posinf=0, neginf=0) # homogeneous (x,y,1)
dot_xy_px = (xy_over_z * pixels).sum(dim=-1)
dot_xy_xy = xy_over_z.square().sum(dim=-1)
focal = dot_xy_px.mean(dim=0) / dot_xy_xy.mean(dim=0)
# iterative re-weighted least-squares
for iter in range(10):
# re-weighting by inverse of distance
dis = (pixels - focal.view(-1, 1) * xy_over_z).norm(dim=-1)
# print(dis.nanmean(-1))
w = dis.clip(min=1e-8).reciprocal()
# update the scaling with the new weights
focal = (w * dot_xy_px).mean(dim=0) / (w * dot_xy_xy).mean(dim=0)
focal_base = max(H, W) / (2 * np.tan(np.deg2rad(60) / 2)) # size / 1.1547005383792515
focal = focal.clip(min=min_focal*focal_base, max=max_focal*focal_base)
return focal.ravel()
def fast_pnp(pts3d, mask, focal=None, pp=None, niter_PnP=10):
"""
Estimate camera poses and focals with RANSAC-PnP.
Inputs:
pts3d: H x W x 3
focal: 1
mask: H x W
pp
"""
H, W, _ = pts3d.shape
pixels = np.mgrid[:W, :H].T.astype(float)
if focal is None:
S = max(W, H)
tentative_focals = np.geomspace(S/2, S*3, 21)
else:
tentative_focals = [focal]
if pp is None:
pp = (W/2, H/2)
best = 0,
for focal in tentative_focals:
K = np.float32([(focal, 0, pp[0]), (0, focal, pp[1]), (0, 0, 1)])
success, R, T, inliers = cv2.solvePnPRansac(pts3d[mask], pixels[mask], K, None,
iterationsCount=niter_PnP, reprojectionError=5, flags=cv2.SOLVEPNP_SQPNP)
if not success:
continue
score = len(inliers)
if success and score > best[0]:
best = score, R, T, focal
if not best[0]:
return None
_, R, T, best_focal = best
R = cv2.Rodrigues(R)[0] # world to cam
world2cam = np.eye(4).astype(float)
world2cam[:3, :3] = R
world2cam[:3, 3] = T.reshape(3)
cam2world = np.linalg.inv(world2cam)
return best_focal, cam2world