bluestyle97's picture
Update freesplatter/webui/runner.py
95b06a0 verified
raw
history blame
22.6 kB
import os
import json
import uuid
import time
import rembg
import numpy as np
import trimesh
import torch
import fpsample
import matplotlib.pyplot as plt
cmap = plt.get_cmap("hsv")
from torchvision.transforms import v2
from pytorch_lightning import seed_everything
from PIL import Image
from omegaconf import OmegaConf
from einops import rearrange
from scipy.spatial.transform import Rotation
from safetensors import safe_open
from huggingface_hub import hf_hub_download, snapshot_download
from transformers import AutoModelForImageSegmentation
from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler
from freesplatter.hunyuan.hunyuan3d_mvd_std_pipeline import HunYuan3D_MVD_Std_Pipeline
from freesplatter.utils.mesh_optim import optimize_mesh
from freesplatter.utils.camera_util import *
from freesplatter.utils.recon_util import *
from freesplatter.utils.infer_util import *
from freesplatter.webui.camera_viewer.visualizer import CameraVisualizer
def inv_sigmoid(x: torch.Tensor) -> torch.Tensor:
return torch.log(x / (1.0 - x))
def save_gaussian(latent, gs_vis_path, model, opacity_threshold=None, pad_2dgs_scale=True):
if latent.ndim == 3:
latent = latent[0]
sh_dim = model.sh_dim
scale_dim = 2 if model.use_2dgs else 3
xyz, features, opacity, scaling, rotation = latent.split([3, sh_dim, 1, scale_dim, 4], dim=-1)
features = features.reshape(features.shape[0], sh_dim//3, 3)
if opacity_threshold is not None:
index = torch.nonzero(opacity.sigmoid() > opacity_threshold)[:, 0]
xyz = xyz[index]
features = features[index]
opacity = opacity[index]
scaling = scaling[index]
rotation = rotation[index]
# transform gaussians from reference view to world view
cam2world = create_camera_to_world(torch.tensor([0, -2, 0]), camera_system='opencv').to(latent)
R, T = cam2world[:3, :3], cam2world[:3, 3].reshape(1, 3)
xyz = xyz @ R.T + T
rotation = rotation.detach().cpu().numpy()
rotation = Rotation.from_quat(rotation[:, [1, 2, 3, 0]]).as_matrix()
rotation = R.detach().cpu().numpy() @ rotation
rotation = Rotation.from_matrix(rotation).as_quat()[:, [3, 0, 1, 2]]
rotation = torch.from_numpy(rotation).to(latent)
# pad 2DGS with an additional z-scale for visualization
if scaling.shape[-1] == 2 and pad_2dgs_scale:
z_scaling = inv_sigmoid(torch.ones_like(scaling[:, :1]) * 0.001)
scaling = torch.cat([scaling, z_scaling], dim=-1)
pc_vis = model.gs_renderer.gaussian_model.set_data(
xyz.float(), features.float(), scaling.float(), rotation.float(), opacity.float())
pc_vis.save_ply_vis(gs_vis_path)
class FreeSplatterRunner:
def __init__(self, device):
self.device = device
# background remover
self.rembg = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet",
trust_remote_code=True,
).to(device)
self.rembg.eval()
# self.rembg = rembg.new_session('birefnet-general')
# diffusion models
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.1",
custom_pipeline="sudo-ai/zero123plus-pipeline",
torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
self.zero123plus_v11 = pipeline.to(device)
pipeline = DiffusionPipeline.from_pretrained(
"sudo-ai/zero123plus-v1.2",
custom_pipeline="sudo-ai/zero123plus-pipeline",
torch_dtype=torch.float16,
)
pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(
pipeline.scheduler.config, timestep_spacing='trailing'
)
self.zero123plus_v12 = pipeline.to(device)
download_dir = snapshot_download('tencent/Hunyuan3D-1', repo_type='model')
pipeline = HunYuan3D_MVD_Std_Pipeline.from_pretrained(
os.path.join(download_dir, 'mvd_std'),
torch_dtype=torch.float16,
use_safetensors=True,
)
self.hunyuan3d_mvd_std = pipeline.to(device)
# freesplatter
config_file = 'configs/freesplatter-object.yaml'
ckpt_path = hf_hub_download('TencentARC/FreeSplatter', repo_type='model', filename='freesplatter-object.safetensors')
model = instantiate_from_config(OmegaConf.load(config_file).model)
state_dict = {}
with safe_open(ckpt_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
model.load_state_dict(state_dict, strict=True)
self.freesplatter = model.eval().to(device)
config_file = 'configs/freesplatter-object-2dgs.yaml'
ckpt_path = hf_hub_download('TencentARC/FreeSplatter', repo_type='model', filename='freesplatter-object-2dgs.safetensors')
model = instantiate_from_config(OmegaConf.load(config_file).model)
state_dict = {}
with safe_open(ckpt_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
model.load_state_dict(state_dict, strict=True)
self.freesplatter_2dgs = model.eval().to(device)
config_file = 'configs/freesplatter-scene.yaml'
ckpt_path = hf_hub_download('TencentARC/FreeSplatter', repo_type='model', filename='freesplatter-scene.safetensors')
model = instantiate_from_config(OmegaConf.load(config_file).model)
state_dict = {}
with safe_open(ckpt_path, framework="pt", device="cpu") as f:
for key in f.keys():
state_dict[key] = f.get_tensor(key)
model.load_state_dict(state_dict, strict=True)
self.freesplatter_scene = model.eval().to(device)
@torch.inference_mode()
def run_segmentation(
self,
image,
do_rembg=True,
):
if do_rembg:
image = remove_background(image, self.rembg)
return image
def run_img_to_3d(
self,
image,
model='Zero123++ v1.2',
diffusion_steps=30,
guidance_scale=4.0,
seed=42,
view_indices=[],
gs_type='2DGS',
mesh_reduction=0.5,
cache_dir=None,
):
image_rgba = self.run_segmentation(image)
res = [image_rgba]
yield res + [None] * (6 - len(res))
self.output_dir = os.path.join(cache_dir, f'output_{uuid.uuid4()}')
os.makedirs(self.output_dir, exist_ok=True)
# image-to-multiview
input_image = resize_foreground(image_rgba, 0.9)
seed_everything(seed)
if model == 'Zero123++ v1.1':
output_image = self.zero123plus_v11(
input_image,
num_inference_steps=diffusion_steps,
guidance_scale=guidance_scale,
).images[0]
elif model == 'Zero123++ v1.2':
output_image = self.zero123plus_v12(
input_image,
num_inference_steps=diffusion_steps,
guidance_scale=guidance_scale,
).images[0]
elif model == 'Hunyuan3D Std':
output_image = self.hunyuan3d_mvd_std(
input_image,
num_inference_steps=diffusion_steps,
guidance_scale=guidance_scale,
guidance_curve=lambda t:2.0,
).images[0]
else:
raise ValueError(f'Unknown model: {model}')
# preprocess images
image, alpha = rgba_to_white_background(input_image)
image = v2.functional.resize(image, 512, interpolation=3, antialias=True).clamp(0, 1)
alpha = v2.functional.resize(alpha, 512, interpolation=0, antialias=True).clamp(0, 1)
output_image_rgba = remove_background(output_image, self.rembg)
if 'Zero123++' in model:
images, alphas = rgba_to_white_background(output_image_rgba)
else:
_, alphas = rgba_to_white_background(output_image_rgba)
images = torch.from_numpy(np.asarray(output_image) / 255.0).float()
images = rearrange(images, 'h w c -> c h w')
images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
alphas = rearrange(alphas, 'c (n h) (m w) -> (n m) c h w', n=3, m=2)
if model == 'Hunyuan3D Std':
images = images[[0, 2, 4, 5, 3, 1]]
alphas = alphas[[0, 2, 4, 5, 3, 1]]
images_vis = v2.functional.to_pil_image(rearrange(images, 'nm c h w -> c h (nm w)'))
res += [images_vis]
yield res + [None] * (6 - len(res))
images = v2.functional.resize(images, 512, interpolation=3, antialias=True).clamp(0, 1)
alphas = v2.functional.resize(alphas, 512, interpolation=0, antialias=True).clamp(0, 1)
images = torch.cat([image.unsqueeze(0), images], dim=0) # 7 x 3 x 512 x 512
alphas = torch.cat([alpha.unsqueeze(0), alphas], dim=0) # 7 x 1 x 512 x 512
# run reconstruction
view_indices = [1, 2, 3, 4, 5, 6] if len(view_indices) == 0 else view_indices
images, alphas = images[view_indices], alphas[view_indices]
legends = [f'V{i}' if i != 0 else 'Input' for i in view_indices]
for item in self.run_freesplatter_object(
images, alphas, legends=legends, gs_type=gs_type, mesh_reduction=mesh_reduction):
res += [item]
yield res + [None] * (6 - len(res))
def run_views_to_3d(
self,
image_files,
do_rembg=False,
gs_type='2DGS',
mesh_reduction=0.5,
cache_dir=None,
):
self.output_dir = os.path.join(cache_dir, f'output_{uuid.uuid4()}')
os.makedirs(self.output_dir, exist_ok=True)
# preprocesss images
images, alphas = [], []
for image_file in image_files:
if isinstance(image_file, tuple):
image_file = image_file[0]
image = Image.open(image_file)
w, h = image.size
image_rgba = self.run_segmentation(image)
if image.mode == 'RGBA':
image, alpha = rgba_to_white_background(image_rgba)
image = v2.functional.center_crop(image, min(h, w))
alpha = v2.functional.center_crop(alpha, min(h, w))
else:
image_rgba = resize_foreground(image_rgba, 0.9)
image_rgba.save('test.png')
image, alpha = rgba_to_white_background(image_rgba)
image = v2.functional.resize(image, 512, interpolation=3, antialias=True).clamp(0, 1)
alpha = v2.functional.resize(alpha, 512, interpolation=0, antialias=True).clamp(0, 1)
images.append(image)
alphas.append(alpha)
images = torch.stack(images, dim=0)
alphas = torch.stack(alphas, dim=0)
images_vis = v2.functional.to_pil_image(rearrange(images, 'n c h w -> c h (n w)'))
# run reconstruction
legends = [f'V{i}' for i in range(1, 1+len(images))]
gs_vis_path, video_path, mesh_fine_path, fig = self.run_freesplatter_object(
images, alphas, legends=legends, gs_type=gs_type, mesh_reduction=mesh_reduction)
return images_vis, gs_vis_path, video_path, mesh_fine_path, fig
def run_freesplatter_object(
self,
images,
alphas,
legends=None,
gs_type='2DGS',
mesh_reduction=0.5,
):
device = self.device
freesplatter = self.freesplatter_2dgs if gs_type == '2DGS' else self.freesplatter
images, alphas = images.to(device), alphas.to(device)
t0 = time.time()
with torch.inference_mode():
gaussians = freesplatter.forward_gaussians(images.unsqueeze(0))
t1 = time.time()
# estimate camera parameters and visualize
c2ws_pred, focals_pred = freesplatter.estimate_poses(images, gaussians, masks=alphas, use_first_focal=True, pnp_iter=10)
fig = self.visualize_cameras_object(images, c2ws_pred, focals_pred, legends=legends)
t2 = time.time()
yield fig
# save gaussians
gs_vis_path = os.path.join(self.output_dir, 'gs_vis.ply')
save_gaussian(gaussians, gs_vis_path, freesplatter, opacity_threshold=5e-3, pad_2dgs_scale=True)
print(f'Save gaussian at {gs_vis_path}')
yield gs_vis_path
# render video
with torch.inference_mode():
c2ws_video = get_circular_cameras(N=120, elevation=0, radius=2.0, normalize=True).to(device)
fx = fy = focals_pred.mean() / 512.0
cx = cy = torch.ones_like(fx) * 0.5
fxfycxcy_video = torch.tensor([fx, fy, cx, cy]).unsqueeze(0).repeat(c2ws_video.shape[0], 1).to(device)
video_frames = freesplatter.forward_renderer(
gaussians,
c2ws_video.unsqueeze(0),
fxfycxcy_video.unsqueeze(0),
)['image'][0].clamp(0, 1)
video_path = os.path.join(self.output_dir, 'gs.mp4')
save_video(video_frames, video_path, fps=30)
print(f'Save video at {video_path}')
t3 = time.time()
yield video_path
# extract mesh
with torch.inference_mode():
c2ws_fusion = get_fibonacci_cameras(N=120, radius=2.0)
c2ws_fusion, _ = normalize_cameras(c2ws_fusion, camera_position=torch.tensor([0., -2., 0.]), camera_system='opencv')
c2ws_fusion = c2ws_fusion.to(device)
c2ws_fusion_reference = torch.linalg.inv(c2ws_fusion[0:1]) @ c2ws_fusion
fx = fy = focals_pred.mean() / 512.0
cx = cy = torch.ones_like(fx) * 0.5
fov = np.rad2deg(np.arctan(0.5 / fx.item())) * 2
fxfycxcy_fusion = torch.tensor([fx, fy, cx, cy]).unsqueeze(0).repeat(c2ws_fusion.shape[0], 1).to(device)
fusion_render_results = freesplatter.forward_renderer(
gaussians,
c2ws_fusion_reference.unsqueeze(0),
fxfycxcy_fusion.unsqueeze(0),
)
images_fusion = fusion_render_results['image'][0].clamp(0, 1).permute(0, 2, 3, 1)
alphas_fusion = fusion_render_results['alpha'][0].permute(0, 2, 3, 1)
depths_fusion = fusion_render_results['depth'][0].permute(0, 2, 3, 1)
fusion_images = (images_fusion.detach().cpu().numpy()*255).clip(0, 255).astype(np.uint8)
fusion_depths = depths_fusion.detach().cpu().numpy()
fusion_alphas = alphas_fusion.detach().cpu().numpy()
fusion_masks = (fusion_alphas > 1e-2).astype(np.uint8)
fusion_depths = fusion_depths * fusion_masks - np.ones_like(fusion_depths) * (1 - fusion_masks)
fusion_c2ws = c2ws_fusion.detach().cpu().numpy()
mesh_path = os.path.join(self.output_dir, 'mesh.obj')
rgbd_to_mesh(
fusion_images, fusion_depths, fusion_c2ws, fov, mesh_path, cam_elev_thr=-90) # use all angles for tsdf fusion
print(f'Save mesh at {mesh_path}')
t4 = time.time()
# optimize texture
cam_pos = c2ws_fusion[:, :3, 3].cpu().numpy()
cam_inds = torch.from_numpy(fpsample.fps_sampling(cam_pos, 16).astype(int)).to(device=device)
alphas_bake = alphas_fusion[cam_inds]
images_bake = (images_fusion[cam_inds] - (1 - alphas_bake)) / alphas_bake.clamp(min=1e-6)
fxfycxcy = fxfycxcy_fusion[cam_inds].clone()
intrinsics = torch.eye(3).unsqueeze(0).repeat(len(cam_inds), 1, 1).to(fxfycxcy)
intrinsics[:, 0, 0] = fxfycxcy[:, 0]
intrinsics[:, 0, 2] = fxfycxcy[:, 2]
intrinsics[:, 1, 1] = fxfycxcy[:, 1]
intrinsics[:, 1, 2] = fxfycxcy[:, 3]
out_mesh = trimesh.load(str(mesh_path), process=False)
out_mesh = optimize_mesh(
out_mesh,
images_bake,
alphas_bake.squeeze(-1),
c2ws_fusion[cam_inds].inverse(),
intrinsics,
simplify=mesh_reduction,
verbose=False
)
mesh_fine_path = os.path.join(self.output_dir, 'mesh.glb')
out_mesh.export(mesh_fine_path)
print(f"Save optimized mesh at {mesh_fine_path}")
t5 = time.time()
print(f'Generate Gaussians: {t1-t0:.2f} seconds.')
print(f'Estimate poses: {t2-t1:.2f} seconds.')
print(f'Generate video: {t3-t2:.2f} seconds.')
print(f'Generate mesh: {t4-t3:.2f} seconds.')
print(f'Optimize mesh: {t5-t4:.2f} seconds.')
yield mesh_fine_path
def visualize_cameras_object(
self,
images,
c2ws,
focal_length,
legends=None,
):
images = v2.functional.resize(images, 128, interpolation=3, antialias=True).clamp(0, 1)
images = (images.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype(np.uint8)
cam2world = create_camera_to_world(torch.tensor([0, -2, 0]), camera_system='opencv').to(c2ws)
transform = cam2world @ torch.linalg.inv(c2ws[0:1])
c2ws = transform @ c2ws
c2ws = c2ws.detach().cpu().numpy()
c2ws[:, :, 1:3] *= -1 # opencv to opengl
focal_length = focal_length.mean().detach().cpu().numpy()
fov = np.rad2deg(np.arctan(256.0 / focal_length)) * 2
colors = [cmap(i / len(images))[:3] for i in range(len(images))]
legends = [None] * len(images) if legends is None else legends
viz = CameraVisualizer(c2ws, legends, colors, images=images)
fig = viz.update_figure(
3,
height=320,
line_width=5,
base_radius=1,
zoom_scale=1,
fov_deg=fov,
show_grid=True,
show_ticklabels=True,
show_background=True,
y_up=False,
)
return fig
# FreeSplatter-S
def run_views_to_scene(
self,
image1,
image2,
cache_dir=None,
):
self.output_dir = os.path.join(cache_dir, f'output_{uuid.uuid4()}')
os.makedirs(self.output_dir, exist_ok=True)
# preprocesss images
images = []
for image in [image1, image2]:
w, h = image.size
image = torch.from_numpy(np.asarray(image) / 255.0).float()
image = rearrange(image, 'h w c -> c h w')
image = v2.functional.center_crop(image, min(h, w))
image = v2.functional.resize(image, 512, interpolation=3, antialias=True).clamp(0, 1)
images.append(image)
images = torch.stack(images, dim=0)
images_vis = v2.functional.to_pil_image(rearrange(images, 'n c h w -> c h (n w)'))
# run reconstruction
legends = [f'V{i}' for i in range(1, 1+len(images))]
gs_vis_path, video_path, fig = self.run_freesplatter_scene(images, legends=legends)
return images_vis, gs_vis_path, video_path, fig
def run_freesplatter_scene(
self,
images,
legends=None,
):
freesplatter = self.freesplatter_scene
device = self.device
images = images.to(device)
t0 = time.time()
with torch.inference_mode():
gaussians = freesplatter.forward_gaussians(images.unsqueeze(0))
t1 = time.time()
# estimate camera parameters
c2ws_pred, focals_pred = freesplatter.estimate_poses(images, gaussians, use_first_focal=True, pnp_iter=10)
# rescale cameras to make the baseline equal to 1.0
baseline_pred = (c2ws_pred[:, :3, 3] - c2ws_pred[:1, :3, 3]).norm() + 1e-2
scale_factor = 1.0 / baseline_pred
c2ws_pred = c2ws_pred.clone()
c2ws_pred[:, :3, 3] *= scale_factor
# visualize cameras
fig = self.visualize_cameras_scene(images, c2ws_pred, focals_pred, legends=legends)
t2 = time.time()
# save gaussians
gs_vis_path = os.path.join(self.output_dir, 'gs_vis.ply')
save_gaussian(gaussians, gs_vis_path, freesplatter, opacity_threshold=5e-3)
print(f'Save gaussian at {gs_vis_path}')
# render video
with torch.inference_mode():
c2ws_video = generate_interpolated_path(c2ws_pred.detach().cpu().numpy()[:, :3, :], n_interp=120)
c2ws_video = torch.cat([
torch.from_numpy(c2ws_video),
torch.tensor([0, 0, 0, 1]).reshape(1, 1, 4).repeat(c2ws_video.shape[0], 1, 1)
], dim=1).to(gaussians)
fx = fy = focals_pred.mean() / 512.0
cx = cy = torch.ones_like(fx) * 0.5
fxfycxcy_video = torch.tensor([fx, fy, cx, cy]).unsqueeze(0).repeat(c2ws_video.shape[0], 1).to(device)
video_frames = freesplatter.forward_renderer(
gaussians,
c2ws_video.unsqueeze(0),
fxfycxcy_video.unsqueeze(0),
rescale=scale_factor.reshape(1).to(gaussians)
)['image'][0].clamp(0, 1)
video_path = os.path.join(self.output_dir, 'gs.mp4')
save_video(video_frames, video_path, fps=30)
print(f'Save video at {video_path}')
t3 = time.time()
print(f'Generate Gaussians: {t1-t0:.2f} seconds.')
print(f'Estimate poses: {t2-t1:.2f} seconds.')
print(f'Generate video: {t3-t2:.2f} seconds.')
return gs_vis_path, video_path, fig
def visualize_cameras_scene(
self,
images,
c2ws,
focal_length,
legends=None,
):
images = v2.functional.resize(images, 128, interpolation=3, antialias=True).clamp(0, 1)
images = (images.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype(np.uint8)
c2ws = c2ws.detach().cpu().numpy()
c2ws[:, :, 1:3] *= -1
focal_length = focal_length.mean().detach().cpu().numpy()
fov = np.rad2deg(np.arctan(256.0 / focal_length)) * 2
colors = [cmap(i / len(images))[:3] for i in range(len(images))]
legends = [None] * len(images) if legends is None else legends
viz = CameraVisualizer(c2ws, legends, colors, images=images)
fig = viz.update_figure(
2,
height=320,
line_width=5,
base_radius=1,
zoom_scale=1,
fov_deg=fov,
show_grid=True,
show_ticklabels=True,
show_background=True,
y_up=False,
)
return fig