Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from PIL import Image | |
import plotly.graph_objects as go | |
import numpy as np | |
def calc_cam_cone_pts_3d(c2w, fov_deg, zoom = 1.0): | |
fov_rad = np.deg2rad(fov_deg) | |
cam_x = c2w[0, -1] | |
cam_y = c2w[1, -1] | |
cam_z = c2w[2, -1] | |
corn1 = [np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0), -1.0] | |
corn2 = [-np.tan(fov_rad / 2.0), np.tan(fov_rad / 2.0), -1.0] | |
corn3 = [-np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0), -1.0] | |
corn4 = [np.tan(fov_rad / 2.0), -np.tan(fov_rad / 2.0), -1.0] | |
corn1 = np.dot(c2w[:3, :3], corn1) | |
corn2 = np.dot(c2w[:3, :3], corn2) | |
corn3 = np.dot(c2w[:3, :3], corn3) | |
corn4 = np.dot(c2w[:3, :3], corn4) | |
# Now attach as offset to actual 3D camera position: | |
corn1 = np.array(corn1) / np.linalg.norm(corn1, ord=2) * zoom | |
corn_x1 = cam_x + corn1[0] | |
corn_y1 = cam_y + corn1[1] | |
corn_z1 = cam_z + corn1[2] | |
corn2 = np.array(corn2) / np.linalg.norm(corn2, ord=2) * zoom | |
corn_x2 = cam_x + corn2[0] | |
corn_y2 = cam_y + corn2[1] | |
corn_z2 = cam_z + corn2[2] | |
corn3 = np.array(corn3) / np.linalg.norm(corn3, ord=2) * zoom | |
corn_x3 = cam_x + corn3[0] | |
corn_y3 = cam_y + corn3[1] | |
corn_z3 = cam_z + corn3[2] | |
corn4 = np.array(corn4) / np.linalg.norm(corn4, ord=2) * zoom | |
corn_x4 = cam_x + corn4[0] | |
corn_y4 = cam_y + corn4[1] | |
corn_z4 = cam_z + corn4[2] | |
xs = [cam_x, corn_x1, corn_x2, corn_x3, corn_x4] | |
ys = [cam_y, corn_y1, corn_y2, corn_y3, corn_y4] | |
zs = [cam_z, corn_z1, corn_z2, corn_z3, corn_z4] | |
return np.array([xs, ys, zs]).T | |
class CameraVisualizer: | |
def __init__(self, poses, legends, colors, images=None, mesh_path=None, pc_path=None, camera_x=1.0): | |
self._fig = None | |
self._camera_x = camera_x | |
self._poses = poses | |
self._legends = legends | |
self._colors = colors | |
self._raw_images = None | |
self._bit_images = None | |
self._image_colorscale = None | |
if images is not None: | |
self._raw_images = images | |
self._bit_images = [] | |
self._image_colorscale = [] | |
for img in images: | |
if img is None: | |
self._bit_images.append(None) | |
self._image_colorscale.append(None) | |
continue | |
bit_img, colorscale = self.encode_image(img) | |
self._bit_images.append(bit_img) | |
self._image_colorscale.append(colorscale) | |
self._mesh = None | |
if mesh_path is not None and os.path.exists(mesh_path): | |
import trimesh | |
self._mesh = trimesh.load(mesh_path, force='mesh') | |
self._pc = None | |
if pc_path is not None and os.path.exists(pc_path): | |
self._pc = np.load(pc_path) | |
def encode_image(self, raw_image): | |
''' | |
:param raw_image (H, W, 3) array of uint8 in [0, 255]. | |
''' | |
# https://stackoverflow.com/questions/60685749/python-plotly-how-to-add-an-image-to-a-3d-scatter-plot | |
dum_img = Image.fromarray(np.ones((3, 3, 3), dtype='uint8')).convert('P', palette='WEB') | |
idx_to_color = np.array(dum_img.getpalette()).reshape((-1, 3)) | |
bit_image = Image.fromarray(raw_image).convert('P', palette='WEB', dither=None) | |
# bit_image = Image.fromarray(raw_image.clip(0, 254)).convert( | |
# 'P', palette='WEB', dither=None) | |
colorscale = [ | |
[i / 255.0, 'rgb({}, {}, {})'.format(*rgb)] for i, rgb in enumerate(idx_to_color)] | |
return bit_image, colorscale | |
def update_figure( | |
self, | |
scene_bounds, | |
height=720, | |
line_width=10, | |
base_radius=0.0, | |
zoom_scale=1.0, | |
fov_deg=50., | |
mesh_z_shift=0.0, | |
mesh_scale=1.0, | |
show_background=False, | |
show_grid=False, | |
show_ticklabels=False, | |
y_up=False, | |
): | |
fig = go.Figure() | |
for i in range(len(self._poses)): | |
pose = self._poses[i] | |
clr = np.array([self._colors[i], self._colors[i]]) | |
legend = self._legends[i] | |
edges = [(0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (2, 3), (3, 4), (4, 1)] | |
if isinstance(fov_deg, float) or len(fov_deg) == 1: | |
fov = fov_deg | |
else: | |
fov = fov_deg[i] | |
cone = calc_cam_cone_pts_3d(pose, fov) | |
radius = np.linalg.norm(pose[:3, -1]) | |
if self._bit_images and self._bit_images[i]: | |
raw_image = self._raw_images[i] | |
bit_image = self._bit_images[i] | |
colorscale = self._image_colorscale[i] | |
(H, W, C) = raw_image.shape | |
z = np.zeros((H, W)) + base_radius | |
scale = np.linalg.norm(cone[1] - cone[2]) / 2 | |
(x, y) = np.meshgrid(np.linspace(-scale, scale, W), np.linspace(scale, -scale, H) * H / W) | |
xyz = np.concatenate([x[..., None], y[..., None], z[..., None]], axis=-1) | |
rot_xyz = np.matmul(xyz, pose[:3, :3].T) + pose[:3, -1] | |
offset = cone[2] - rot_xyz[0, 0, :] | |
rot_xyz += offset.reshape((1, 1, 3)) | |
x, y, z = rot_xyz[:, :, 0], rot_xyz[:, :, 1], rot_xyz[:, :, 2] | |
fig.add_trace(go.Surface( | |
x=x, y=y, z=z, | |
surfacecolor=bit_image, | |
cmin=0, | |
cmax=255, | |
colorscale=colorscale, | |
showscale=False, | |
lighting_diffuse=1.0, | |
lighting_ambient=1.0, | |
lighting_fresnel=1.0, | |
lighting_roughness=1.0, | |
# lighting_specular=0.3)) | |
lighting_specular=0, | |
showlegend=False)) | |
for (j, edge) in enumerate(edges): | |
(x1, x2) = (cone[edge[0], 0], cone[edge[1], 0]) | |
(y1, y2) = (cone[edge[0], 1], cone[edge[1], 1]) | |
(z1, z2) = (cone[edge[0], 2], cone[edge[1], 2]) | |
fig.add_trace(go.Scatter3d( | |
x=[x1, x2], | |
y=[y1, y2], | |
z=[z1, z2], | |
mode='lines', | |
line=dict(color=clr, width=line_width), | |
showlegend=False)) | |
# Add label. | |
if cone[0, 2] < 0: | |
fig.add_trace(go.Scatter3d( | |
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] - 0.05], showlegend=False, | |
mode='text', text=legend, textposition='bottom center')) | |
else: | |
fig.add_trace(go.Scatter3d( | |
x=[cone[0, 0]], y=[cone[0, 1]], z=[cone[0, 2] + 0.05], showlegend=False, | |
mode='text', text=legend, textposition='top center')) | |
# look at the center of scene | |
fig.update_layout( | |
height=height, | |
autosize=True, | |
hovermode=False, | |
margin=go.layout.Margin(l=0, r=0, b=0, t=0), | |
showlegend=True, | |
legend=dict( | |
yanchor='bottom', | |
y=0.01, | |
xanchor='right', | |
x=0.99, | |
), | |
scene=dict( | |
aspectmode='manual', | |
aspectratio=dict(x=1, y=1, z=1), | |
camera=dict( | |
eye=dict(x=1.5, y=1.5, z=1.0), | |
center=dict(x=0.0, y=0.0, z=0.0), | |
up=dict(x=0.0, y=0.0, z=1.0)), | |
xaxis_title='X', | |
yaxis_title='Z' if y_up else 'Y', | |
zaxis_title='Y' if y_up else 'Z', | |
xaxis=dict( | |
range=[-scene_bounds, scene_bounds], | |
showticklabels=show_ticklabels, | |
showgrid=show_grid, | |
zeroline=False, | |
showbackground=show_background, | |
showspikes=False, | |
showline=False, | |
ticks=''), | |
yaxis=dict( | |
range=[-scene_bounds, scene_bounds], | |
showticklabels=show_ticklabels, | |
showgrid=show_grid, | |
zeroline=False, | |
showbackground=show_background, | |
showspikes=False, | |
showline=False, | |
ticks=''), | |
zaxis=dict( | |
range=[-scene_bounds, scene_bounds], | |
showticklabels=show_ticklabels, | |
showgrid=show_grid, | |
zeroline=False, | |
showbackground=show_background, | |
showspikes=False, | |
showline=False, | |
ticks='') | |
) | |
) | |
self._fig = fig | |
return fig | |