FreeSplatter / freesplatter /utils /geometry_util.py
bluestyle97's picture
Upload 147 files
184193d verified
import torch
import torch.nn.functional as F
from einops import rearrange
# --- Intrinsics Transformations ---
def normalize_intrinsics(intrinsics, image_shape):
'''Normalize an intrinsics matrix given the image shape'''
intrinsics = intrinsics.clone()
intrinsics[..., 0, :] /= image_shape[1]
intrinsics[..., 1, :] /= image_shape[0]
return intrinsics
def unnormalize_intrinsics(intrinsics, image_shape):
'''Unnormalize an intrinsics matrix given the image shape'''
intrinsics = intrinsics.clone()
intrinsics[..., 0, :] *= image_shape[1]
intrinsics[..., 1, :] *= image_shape[0]
return intrinsics
# --- Projections ---
def homogenize_points(points):
"""Append a '1' along the final dimension of the tensor (i.e. convert xyz->xyz1)"""
return torch.cat([points, torch.ones_like(points[..., :1])], dim=-1)
def normalize_homogenous_points(points):
"""Normalize the point vectors"""
return points / points[..., -1:]
def pixel_space_to_camera_space(pixel_space_points, depth, intrinsics):
"""
Convert pixel space points to camera space points.
Args:
pixel_space_points (torch.Tensor): Pixel space points with shape (h, w, 2)
depth (torch.Tensor): Depth map with shape (b, v, h, w, 1)
intrinsics (torch.Tensor): Camera intrinsics with shape (b, v, 3, 3)
Returns:
torch.Tensor: Camera space points with shape (b, v, h, w, 3).
"""
pixel_space_points = homogenize_points(pixel_space_points)
camera_space_points = torch.einsum('b v i j , h w j -> b v h w i', intrinsics.inverse(), pixel_space_points)
camera_space_points = camera_space_points * depth
return camera_space_points
def camera_space_to_world_space(camera_space_points, c2w):
"""
Convert camera space points to world space points.
Args:
camera_space_points (torch.Tensor): Camera space points with shape (b, v, h, w, 3)
c2w (torch.Tensor): Camera to world extrinsics matrix with shape (b, v, 4, 4)
Returns:
torch.Tensor: World space points with shape (b, v, h, w, 3).
"""
camera_space_points = homogenize_points(camera_space_points)
world_space_points = torch.einsum('b v i j , b v h w j -> b v h w i', c2w, camera_space_points)
return world_space_points[..., :3]
def camera_space_to_pixel_space(camera_space_points, intrinsics):
"""
Convert camera space points to pixel space points.
Args:
camera_space_points (torch.Tensor): Camera space points with shape (b, v1, v2, h, w, 3)
c2w (torch.Tensor): Camera to world extrinsics matrix with shape (b, v2, 3, 3)
Returns:
torch.Tensor: World space points with shape (b, v1, v2, h, w, 2).
"""
camera_space_points = normalize_homogenous_points(camera_space_points)
pixel_space_points = torch.einsum('b u i j , b v u h w j -> b v u h w i', intrinsics, camera_space_points)
return pixel_space_points[..., :2]
def world_space_to_camera_space(world_space_points, c2w):
"""
Convert world space points to pixel space points.
Args:
world_space_points (torch.Tensor): World space points with shape (b, v1, h, w, 3)
c2w (torch.Tensor): Camera to world extrinsics matrix with shape (b, v2, 4, 4)
Returns:
torch.Tensor: Camera space points with shape (b, v1, v2, h, w, 3).
"""
world_space_points = homogenize_points(world_space_points)
camera_space_points = torch.einsum('b u i j , b v h w j -> b v u h w i', c2w.inverse(), world_space_points)
return camera_space_points[..., :3]
def unproject_depth(depth, intrinsics, c2w):
"""
Turn the depth map into a 3D point cloud in world space
Args:
depth: (b, v, h, w, 1)
intrinsics: (b, v, 3, 3)
c2w: (b, v, 4, 4)
Returns:
torch.Tensor: World space points with shape (b, v, h, w, 3).
"""
# Compute indices of pixels
h, w = depth.shape[-3], depth.shape[-2]
x_grid, y_grid = torch.meshgrid(
torch.arange(w, device=depth.device, dtype=torch.float32),
torch.arange(h, device=depth.device, dtype=torch.float32),
indexing='xy'
) # (h, w), (h, w)
# Compute coordinates of pixels in camera space
pixel_space_points = torch.stack((x_grid, y_grid), dim=-1) # (..., h, w, 2)
camera_points = pixel_space_to_camera_space(pixel_space_points, depth, intrinsics) # (..., h, w, 3)
# Convert points to world space
world_points = camera_space_to_world_space(camera_points, c2w) # (..., h, w, 3)
return world_points
@torch.no_grad()
def calculate_in_frustum_mask(depth_1, intrinsics_1, c2w_1, depth_2, intrinsics_2, c2w_2, depth_tolerance=1e-1):
"""
A function that takes in the depth, intrinsics and c2w matrices of two sets
of views, and then works out which of the pixels in the first set of views
has a direct corresponding pixel in any of views in the second set
Args:
depth_1: (b, v1, h, w)
intrinsics_1: (b, v1, 3, 3)
c2w_1: (b, v1, 4, 4)
depth_2: (b, v2, h, w)
intrinsics_2: (b, v2, 3, 3)
c2w_2: (b, v2, 4, 4)
Returns:
torch.Tensor: Mask with shape (b, v1, h, w).
"""
_, v1, h, w = depth_1.shape
_, v2, _, _ = depth_2.shape
# unnormalize intrinsics if needed
if intrinsics_1[0, 0, 0, 2] < 1:
intrinsics_1 = unnormalize_intrinsics(intrinsics_1, (h, w))
if intrinsics_2[0, 0, 0, 2] < 1:
intrinsics_2 = unnormalize_intrinsics(intrinsics_2, (h, w))
# Unproject the depth to get the 3D points in world space
points_3d = unproject_depth(depth_1[..., None], intrinsics_1, c2w_1) # (b, v1, h, w, 3)
# Project the 3D points into the pixel space of all the second views simultaneously
camera_points = world_space_to_camera_space(points_3d, c2w_2) # (b, v1, v2, h, w, 3)
points_2d = camera_space_to_pixel_space(camera_points, intrinsics_2) # (b, v1, v2, h, w, 2)
# Calculate the depth of each point
rendered_depth = camera_points[..., 2] # (b, v1, v2, h, w)
# We use three conditions to determine if a point should be masked
# Condition 1: Check if the points are in the frustum of any of the v2 views
in_frustum_mask = (
(points_2d[..., 0] > 0) &
(points_2d[..., 0] < w) &
(points_2d[..., 1] > 0) &
(points_2d[..., 1] < h)
) # (b, v1, v2, h, w)
in_frustum_mask = in_frustum_mask.any(dim=-3) # (b, v1, h, w)
# Condition 2: Check if the points have non-zero (i.e. valid) depth in the input view
non_zero_depth = depth_1 > 1e-6
# Condition 3: Check if the points have matching depth to any of the v2
# views F.grid_sample expects the input coordinates to
# be normalized to the range [-1, 1], so we normalize first
points_2d[..., 0] /= w
points_2d[..., 1] /= h
points_2d = points_2d * 2 - 1
matching_depth = torch.ones_like(rendered_depth, dtype=torch.bool)
for b in range(depth_1.shape[0]):
for i in range(v1):
for j in range(v2):
depth = rearrange(depth_2[b, j], 'h w -> 1 1 h w')
coords = rearrange(points_2d[b, i, j], 'h w c -> 1 h w c')
sampled_depths = F.grid_sample(depth, coords, align_corners=False)[0, 0]
matching_depth[b, i, j] = torch.isclose(rendered_depth[b, i, j], sampled_depths, atol=depth_tolerance)
matching_depth = matching_depth.any(dim=-3) # (..., v1, h, w)
mask = in_frustum_mask & non_zero_depth & matching_depth
return mask