bluestyle97's picture
Update freesplatter/utils/infer_util.py
c070b3c verified
import os
import importlib
import imageio
import torch
import rembg
import numpy as np
import PIL.Image
from PIL import Image
from typing import Any
from torchvision import transforms
def instantiate_from_config(config):
if not "target" in config:
if config == '__is_first_stage__':
return None
elif config == "__is_unconditional__":
return None
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", dict()))
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
# def resize_without_crop(pil_image, target_width, target_height):
# resized_image = pil_image.resize((target_width, target_height), Image.LANCZOS)
# return np.array(resized_image)[:, :, :3]
# @torch.inference_mode()
# def numpy2pytorch(imgs):
# h = torch.from_numpy(np.stack(imgs, axis=0)).float() / 255.0 * 2.0 - 1.0
# h = h.movedim(-1, 1)
# return h
# @torch.inference_mode()
# def remove_background(
# image: PIL.Image.Image,
# rembg: Any = None,
# force: bool = False,
# **rembg_kwargs,
# ) -> PIL.Image.Image:
# do_remove = True
# if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# do_remove = False
# do_remove = do_remove or force
# if do_remove:
# W, H = image.size
# k = (256.0 / float(H * W)) ** 0.5
# feed = resize_without_crop(image, int(64 * round(W * k)), int(64 * round(H * k)))
# feed = numpy2pytorch([feed]).to(device=rembg.device, dtype=torch.float32)
# alpha = rembg(feed)[0][0]
# alpha = torch.nn.functional.interpolate(alpha, size=(H, W), mode="bilinear")
# alpha = alpha.squeeze().clamp(0, 1)
# alpha = (alpha * 255).cpu().data.numpy().astype(np.uint8)
# alpha = Image.fromarray(alpha)
# no_bg_image = Image.new("RGBA", alpha.size, (0, 0, 0, 0))
# no_bg_image.paste(image, mask=alpha)
# image = no_bg_image
# return image
@torch.inference_mode()
def remove_background(
image: PIL.Image.Image,
rembg: Any = None,
force: bool = False,
**rembg_kwargs,
) -> PIL.Image.Image:
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
transform_image = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image = image.convert('RGB')
input_images = transform_image(image).unsqueeze(0).to(rembg.device)
with torch.no_grad():
preds = rembg(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image.size)
image.putalpha(mask)
return image
# def remove_background(image: PIL.Image.Image,
# rembg_session: Any = None,
# force: bool = False,
# **rembg_kwargs,
# ) -> PIL.Image.Image:
# do_remove = True
# if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
# do_remove = False
# do_remove = do_remove or force
# if do_remove:
# image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
# return image
def resize_foreground(
image: PIL.Image.Image,
ratio: float,
) -> PIL.Image.Image:
image = np.array(image)
assert image.shape[-1] == 4
alpha = np.where(image[..., 3] > 0)
y1, y2, x1, x2 = (
alpha[0].min(),
alpha[0].max(),
alpha[1].min(),
alpha[1].max(),
)
# crop the foreground
fg = image[y1:y2, x1:x2]
# pad to square
size = max(fg.shape[0], fg.shape[1])
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
new_image = np.pad(
fg,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
# compute padding according to the ratio
new_size = int(new_image.shape[0] / ratio)
# pad to size, double side
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
new_image = np.pad(
new_image,
((ph0, ph1), (pw0, pw1), (0, 0)),
mode="constant",
constant_values=((0, 0), (0, 0), (0, 0)),
)
new_image = Image.fromarray(new_image)
return new_image
def rgba_to_white_background(image: PIL.Image.Image) -> torch.Tensor:
image = np.asarray(image, dtype=np.float32) / 255.0
image = torch.from_numpy(image).movedim(2, 0).float()
image, alpha = image.split([3, 1], dim=0)
image = image * alpha + torch.ones_like(image) * (1 - alpha)
return image, alpha
def save_video(
frames: torch.Tensor,
output_path: str,
fps: int = 30,
) -> None:
# images: (N, C, H, W)
frames = [(frame.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8) for frame in frames]
writer = imageio.get_writer(output_path, mode='I', fps=fps, codec='libx264')
for frame in frames:
writer.append_data(frame)
writer.close()