Spaces:
Running
on
Zero
Running
on
Zero
bluestyle97
commited on
Create mesh_optim.py
Browse files- freesplatter/utils/mesh_optim.py +203 -0
freesplatter/utils/mesh_optim.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import *
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
import utils3d
|
5 |
+
import nvdiffrast.torch as dr
|
6 |
+
from tqdm import tqdm
|
7 |
+
import trimesh
|
8 |
+
import trimesh.visual
|
9 |
+
import xatlas
|
10 |
+
import cv2
|
11 |
+
from PIL import Image
|
12 |
+
import fast_simplification
|
13 |
+
|
14 |
+
from freesplatter.utils.mesh import Mesh
|
15 |
+
|
16 |
+
|
17 |
+
def parametrize_mesh(vertices: np.array, faces: np.array):
|
18 |
+
"""
|
19 |
+
Parametrize a mesh to a texture space, using xatlas.
|
20 |
+
Args:
|
21 |
+
vertices (np.array): Vertices of the mesh. Shape (V, 3).
|
22 |
+
faces (np.array): Faces of the mesh. Shape (F, 3).
|
23 |
+
"""
|
24 |
+
|
25 |
+
vmapping, indices, uvs = xatlas.parametrize(vertices, faces)
|
26 |
+
|
27 |
+
vertices = vertices[vmapping]
|
28 |
+
faces = indices
|
29 |
+
|
30 |
+
return vertices, faces, uvs
|
31 |
+
|
32 |
+
|
33 |
+
def bake_texture(
|
34 |
+
vertices: np.array,
|
35 |
+
faces: np.array,
|
36 |
+
uvs: np.array,
|
37 |
+
observations: List[np.array],
|
38 |
+
masks: List[np.array],
|
39 |
+
extrinsics: List[np.array],
|
40 |
+
intrinsics: List[np.array],
|
41 |
+
texture_size: int = 2048,
|
42 |
+
near: float = 0.1,
|
43 |
+
far: float = 10.0,
|
44 |
+
mode: Literal['fast', 'opt'] = 'opt',
|
45 |
+
lambda_tv: float = 1e-2,
|
46 |
+
verbose: bool = False,
|
47 |
+
):
|
48 |
+
"""
|
49 |
+
Bake texture to a mesh from multiple observations.
|
50 |
+
Args:
|
51 |
+
vertices (np.array): Vertices of the mesh. Shape (V, 3).
|
52 |
+
faces (np.array): Faces of the mesh. Shape (F, 3).
|
53 |
+
uvs (np.array): UV coordinates of the mesh. Shape (V, 2).
|
54 |
+
observations (List[np.array]): List of observations. Each observation is a 2D image. Shape (H, W, 3).
|
55 |
+
masks (List[np.array]): List of masks. Each mask is a 2D image. Shape (H, W).
|
56 |
+
extrinsics (List[np.array]): List of extrinsics. Shape (4, 4).
|
57 |
+
intrinsics (List[np.array]): List of intrinsics. Shape (3, 3).
|
58 |
+
texture_size (int): Size of the texture.
|
59 |
+
near (float): Near plane of the camera.
|
60 |
+
far (float): Far plane of the camera.
|
61 |
+
mode (Literal['fast', 'opt']): Mode of texture baking.
|
62 |
+
lambda_tv (float): Weight of total variation loss in optimization.
|
63 |
+
verbose (bool): Whether to print progress.
|
64 |
+
"""
|
65 |
+
vertices = torch.tensor(vertices).float().cuda()
|
66 |
+
faces = torch.tensor(faces.astype(np.int32)).cuda()
|
67 |
+
uvs = torch.tensor(uvs).float().cuda()
|
68 |
+
observations = [torch.tensor(obs).float().cuda() for obs in observations]
|
69 |
+
masks = [torch.tensor(m>1e-2).bool().cuda() for m in masks]
|
70 |
+
views = [utils3d.torch.extrinsics_to_view(torch.tensor(extr).float().cuda()) for extr in extrinsics]
|
71 |
+
projections = [utils3d.torch.intrinsics_to_perspective(torch.tensor(intr).float().cuda(), near, far) for intr in intrinsics]
|
72 |
+
|
73 |
+
if mode == 'fast':
|
74 |
+
texture = torch.zeros((texture_size * texture_size, 3), dtype=torch.float32).cuda()
|
75 |
+
texture_weights = torch.zeros((texture_size * texture_size), dtype=torch.float32).cuda()
|
76 |
+
rastctx = utils3d.torch.RastContext(backend='cuda')
|
77 |
+
for observation, view, projection in tqdm(zip(observations, views, projections), total=len(observations), disable=not verbose, desc='Texture baking (fast)'):
|
78 |
+
with torch.no_grad():
|
79 |
+
rast = utils3d.torch.rasterize_triangle_faces(
|
80 |
+
rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection
|
81 |
+
)
|
82 |
+
uv_map = rast['uv'][0].detach().flip(0)
|
83 |
+
mask = rast['mask'][0].detach().bool() & masks[0]
|
84 |
+
|
85 |
+
# nearest neighbor interpolation
|
86 |
+
uv_map = (uv_map * texture_size).floor().long()
|
87 |
+
obs = observation[mask]
|
88 |
+
uv_map = uv_map[mask]
|
89 |
+
idx = uv_map[:, 0] + (texture_size - uv_map[:, 1] - 1) * texture_size
|
90 |
+
texture = texture.scatter_add(0, idx.view(-1, 1).expand(-1, 3), obs)
|
91 |
+
texture_weights = texture_weights.scatter_add(0, idx, torch.ones((obs.shape[0]), dtype=torch.float32, device=texture.device))
|
92 |
+
|
93 |
+
mask = texture_weights > 0
|
94 |
+
texture[mask] /= texture_weights[mask][:, None]
|
95 |
+
texture = np.clip(texture.reshape(texture_size, texture_size, 3).cpu().numpy() * 255, 0, 255).astype(np.uint8)
|
96 |
+
|
97 |
+
# inpaint
|
98 |
+
mask = (texture_weights == 0).cpu().numpy().astype(np.uint8).reshape(texture_size, texture_size)
|
99 |
+
texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)
|
100 |
+
|
101 |
+
elif mode == 'opt':
|
102 |
+
rastctx = utils3d.torch.RastContext(backend='cuda')
|
103 |
+
observations = [observations.flip(0) for observations in observations]
|
104 |
+
masks = [m.flip(0) for m in masks]
|
105 |
+
_uv = []
|
106 |
+
_uv_dr = []
|
107 |
+
for observation, view, projection in tqdm(zip(observations, views, projections), total=len(views), disable=not verbose, desc='Texture baking (opt): UV'):
|
108 |
+
with torch.no_grad():
|
109 |
+
rast = utils3d.torch.rasterize_triangle_faces(
|
110 |
+
rastctx, vertices[None], faces, observation.shape[1], observation.shape[0], uv=uvs[None], view=view, projection=projection
|
111 |
+
)
|
112 |
+
_uv.append(rast['uv'].detach())
|
113 |
+
_uv_dr.append(rast['uv_dr'].detach())
|
114 |
+
|
115 |
+
texture = torch.nn.Parameter(torch.zeros((1, texture_size, texture_size, 3), dtype=torch.float32).cuda())
|
116 |
+
optimizer = torch.optim.Adam([texture], betas=(0.5, 0.9), lr=1e-2)
|
117 |
+
|
118 |
+
def exp_anealing(optimizer, step, total_steps, start_lr, end_lr):
|
119 |
+
return start_lr * (end_lr / start_lr) ** (step / total_steps)
|
120 |
+
|
121 |
+
def cosine_anealing(optimizer, step, total_steps, start_lr, end_lr):
|
122 |
+
return end_lr + 0.5 * (start_lr - end_lr) * (1 + np.cos(np.pi * step / total_steps))
|
123 |
+
|
124 |
+
def tv_loss(texture):
|
125 |
+
return torch.nn.functional.l1_loss(texture[:, :-1, :, :], texture[:, 1:, :, :]) + \
|
126 |
+
torch.nn.functional.l1_loss(texture[:, :, :-1, :], texture[:, :, 1:, :])
|
127 |
+
|
128 |
+
total_steps = 2500
|
129 |
+
with tqdm(total=total_steps, disable=not verbose, desc='Texture baking (opt): optimizing') as pbar:
|
130 |
+
for step in range(total_steps):
|
131 |
+
optimizer.zero_grad()
|
132 |
+
selected = np.random.randint(0, len(views))
|
133 |
+
uv, uv_dr, observation, mask = _uv[selected], _uv_dr[selected], observations[selected], masks[selected]
|
134 |
+
render = dr.texture(texture, uv, uv_dr)[0]
|
135 |
+
loss = torch.nn.functional.l1_loss(render[mask], observation[mask])
|
136 |
+
if lambda_tv > 0:
|
137 |
+
loss += lambda_tv * tv_loss(texture)
|
138 |
+
loss.backward()
|
139 |
+
optimizer.step()
|
140 |
+
# annealing
|
141 |
+
optimizer.param_groups[0]['lr'] = cosine_anealing(optimizer, step, total_steps, 1e-2, 1e-5)
|
142 |
+
pbar.set_postfix({'loss': loss.item()})
|
143 |
+
pbar.update()
|
144 |
+
texture = np.clip(texture[0].flip(0).detach().cpu().numpy() * 255, 0, 255).astype(np.uint8)
|
145 |
+
mask = 1 - utils3d.torch.rasterize_triangle_faces(
|
146 |
+
rastctx, (uvs * 2 - 1)[None], faces, texture_size, texture_size
|
147 |
+
)['mask'][0].detach().cpu().numpy().astype(np.uint8)
|
148 |
+
texture = cv2.inpaint(texture, mask, 3, cv2.INPAINT_TELEA)
|
149 |
+
else:
|
150 |
+
raise ValueError(f'Unknown mode: {mode}')
|
151 |
+
|
152 |
+
return texture
|
153 |
+
|
154 |
+
|
155 |
+
def optimize_mesh(
|
156 |
+
mesh: Mesh,
|
157 |
+
images: torch.Tensor,
|
158 |
+
masks: torch.Tensor,
|
159 |
+
extrinsics: torch.Tensor,
|
160 |
+
intrinsics: torch.Tensor,
|
161 |
+
simplify: float = 0.95,
|
162 |
+
texture_size: int = 1024,
|
163 |
+
verbose: bool = False,
|
164 |
+
) -> trimesh.Trimesh:
|
165 |
+
"""
|
166 |
+
Convert a generated asset to a glb file.
|
167 |
+
Args:
|
168 |
+
mesh (Mesh): Extracted mesh.
|
169 |
+
simplify (float): Ratio of faces to remove in simplification.
|
170 |
+
texture_size (int): Size of the texture.
|
171 |
+
verbose (bool): Whether to print progress.
|
172 |
+
"""
|
173 |
+
vertices = mesh.v.cpu().numpy()
|
174 |
+
faces = mesh.f.cpu().numpy()
|
175 |
+
|
176 |
+
# mesh simplification
|
177 |
+
max_faces = 50000
|
178 |
+
mesh_reduction = max(1 - max_faces / faces.shape[0], simplify)
|
179 |
+
vertices, faces = fast_simplification.simplify(
|
180 |
+
vertices, faces, target_reduction=mesh_reduction)
|
181 |
+
|
182 |
+
# parametrize mesh
|
183 |
+
vertices, faces, uvs = parametrize_mesh(vertices, faces)
|
184 |
+
|
185 |
+
# bake texture
|
186 |
+
images = [images[i].cpu().numpy() for i in range(len(images))]
|
187 |
+
masks = [masks[i].cpu().numpy() for i in range(len(masks))]
|
188 |
+
extrinsics = [extrinsics[i].cpu().numpy() for i in range(len(extrinsics))]
|
189 |
+
intrinsics = [intrinsics[i].cpu().numpy() for i in range(len(intrinsics))]
|
190 |
+
texture = bake_texture(
|
191 |
+
vertices.astype(float), faces.astype(float), uvs,
|
192 |
+
images, masks, extrinsics, intrinsics,
|
193 |
+
texture_size=texture_size,
|
194 |
+
mode='opt',
|
195 |
+
lambda_tv=0.01,
|
196 |
+
verbose=verbose
|
197 |
+
)
|
198 |
+
texture = Image.fromarray(texture)
|
199 |
+
|
200 |
+
# rotate mesh
|
201 |
+
vertices = vertices.astype(float) @ np.array([[-1, 0, 0], [0, 0, 1], [0, 1, 0]]).astype(float)
|
202 |
+
mesh = trimesh.Trimesh(vertices, faces, visual=trimesh.visual.TextureVisuals(uv=uvs, image=texture))
|
203 |
+
return mesh
|