File size: 22,415 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import warnings
from typing import Any, Optional

import bitsandbytes as bnb
import torch

from peft.import_utils import is_bnb_4bit_available, is_bnb_available
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils.integrations import dequantize_bnb_weight
from peft.utils.other import transpose

from .layer import LoraLayer


if is_bnb_available():

    class Linear8bitLt(torch.nn.Module, LoraLayer):
        # Lora implemented in a dense layer
        def __init__(
            self,
            base_layer: torch.nn.Module,
            adapter_name: str,
            r: int = 0,
            lora_alpha: int = 1,
            lora_dropout: float = 0.0,
            init_lora_weights: bool = True,
            use_rslora: bool = False,
            use_dora: bool = False,
            **kwargs,
        ) -> None:
            super().__init__()
            LoraLayer.__init__(self, base_layer)
            self.fan_in_fan_out = False

            self._active_adapter = adapter_name
            self.update_layer(
                adapter_name,
                r,
                lora_alpha=lora_alpha,
                lora_dropout=lora_dropout,
                init_lora_weights=init_lora_weights,
                use_rslora=use_rslora,
                use_dora=use_dora,
            )

        def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
            """
            Merge the active adapter weights into the base weights

            Args:
                safe_merge (`bool`, *optional*):
                    If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                    before merging the weights. This is useful if you want to check if the merge operation will produce
                    NaNs. Defaults to `False`.
                adapter_names (`list[str]`, *optional*):
                    The list of adapter names that should be merged. If None, all active adapters will be merged.
                    Defaults to `None`.
            """
            adapter_names = check_adapters_to_merge(self, adapter_names)
            if not adapter_names:
                # no adapter to merge
                return

            for active_adapter in adapter_names:
                if active_adapter not in self.lora_A.keys():
                    continue

                warnings.warn(
                    "Merge lora module to 8-bit linear may get different generations due to rounding errors."
                )
                lora_data = self.get_delta_weight(active_adapter)

                weight = self.get_base_layer().weight
                state = self.get_base_layer().state
                if state.SCB is None:
                    state.SCB = weight.SCB

                # Dequantize the result of identity matrix and int8 weight because bitsandbytes does not support int8
                # dequantization directly
                output = dequantize_bnb_weight(weight, state=state)
                if not self.use_dora[active_adapter]:
                    w_data = output.to(lora_data.dtype).to(lora_data.device) + lora_data
                else:
                    # handle dora
                    # since output already includes scaling, set it to 1 here
                    weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach()
                    # We need to cache weight_norm because it has to be based on the original weights. We
                    # cannot calculate it on the fly based on the merged weights when unmerging because its a
                    # different value
                    self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                    dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                    w_data = dora_factor.view(-1, 1) * (output + lora_data)

                if safe_merge and not torch.isfinite(w_data).all():
                    raise ValueError(
                        f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                    )

                self.get_base_layer().weight = bnb.nn.Int8Params(
                    w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights
                ).to(weight.device)
                state.reset_grads()
                self.merged_adapters.append(active_adapter)

        def unmerge(self) -> None:
            """
            This method unmerges all merged adapter layers from the base weights.
            """
            if not self.merged:
                warnings.warn("Already unmerged. Nothing to do.")
                return

            while len(self.merged_adapters) > 0:
                active_adapter = self.merged_adapters.pop()
                if active_adapter not in self.lora_A.keys():
                    continue
                warnings.warn(
                    "Unmerge lora module to 8-bit linear may get different generations due to rounding errors."
                )
                lora_data = self.get_delta_weight(active_adapter)

                weight = self.get_base_layer().weight
                state = self.get_base_layer().state
                if state.SCB is None:
                    state.SCB = weight.SCB
                output = dequantize_bnb_weight(weight, state=state)

                if not self.use_dora[active_adapter]:
                    w_data = output.to(lora_data.dtype).to(lora_data.device) - lora_data
                else:
                    weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
                    dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                    w_data = output.data / dora_factor.view(-1, 1) - lora_data

                self.get_base_layer().weight = bnb.nn.Int8Params(
                    w_data.to("cpu"), requires_grad=False, has_fp16_weights=weight.has_fp16_weights
                ).to(weight.device)
                state.reset_grads()

        def get_delta_weight(self, adapter):
            return (
                transpose(
                    self.lora_B[adapter].weight @ self.lora_A[adapter].weight,
                    False,
                )
                * self.scaling[adapter]
            )

        def _mixed_batch_forward(
            self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
        ) -> torch.Tensor:
            # This is a special method that handles the case when users pass the argument `adapter_names`. This is an
            # extra argument that allows mixing different adapters in the same batch at inference time.
            result = self.base_layer(x, *args, **kwargs)

            unique_adapters = set(adapter_names)
            sub_batch_indices_list = []
            for adapter in unique_adapters:
                sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])

            for i, active_adapter in enumerate(unique_adapters):
                if active_adapter == "__base__":
                    continue
                if active_adapter not in self.lora_A.keys():
                    continue

                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]

                requires_conversion = not torch.is_autocast_enabled()
                if requires_conversion:
                    expected_dtype = result.dtype
                    compute_dtype = lora_A.weight.dtype
                    if x.dtype != compute_dtype:
                        x = x.to(compute_dtype)

                # getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
                # layer output
                sub_batch = x[sub_batch_indices_list[i]]
                output = lora_B(lora_A(dropout(sub_batch))) * scaling
                if requires_conversion:
                    output = output.to(expected_dtype)
                result[sub_batch_indices_list[i]] += output

            return result

        def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
            self._check_forward_args(x, *args, **kwargs)
            adapter_names = kwargs.pop("adapter_names", None)

            if self.disable_adapters:
                if self.merged:
                    self.unmerge()
                result = self.base_layer(x, *args, **kwargs)
            elif adapter_names is not None:
                result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
            elif self.merged:
                result = self.base_layer(x, *args, **kwargs)
            else:
                result = self.base_layer(x, *args, **kwargs)
                for active_adapter in self.active_adapters:
                    if active_adapter not in self.lora_A.keys():
                        continue
                    lora_A = self.lora_A[active_adapter]
                    lora_B = self.lora_B[active_adapter]
                    dropout = self.lora_dropout[active_adapter]
                    scaling = self.scaling[active_adapter]

                    requires_conversion = not torch.is_autocast_enabled()
                    if requires_conversion:
                        expected_dtype = result.dtype
                        compute_dtype = lora_A.weight.dtype
                        if x.dtype != compute_dtype:
                            x = x.to(compute_dtype)

                    if not self.use_dora[active_adapter]:
                        output = lora_B(lora_A(dropout(x))) * scaling
                    else:
                        output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
                    if requires_conversion:
                        output = output.to(expected_dtype)

                    result = result + output

            return result

        def __repr__(self) -> str:
            rep = super().__repr__()
            return "lora." + rep

    def dispatch_bnb_8bit(target: torch.nn.Module, adapter_name: str, **kwargs):
        new_module = None

        if isinstance(target, BaseTunerLayer):
            target_base_layer = target.get_base_layer()
        else:
            target_base_layer = target

        loaded_in_8bit = kwargs.get("loaded_in_8bit", False)
        if loaded_in_8bit and isinstance(target_base_layer, bnb.nn.Linear8bitLt):
            eightbit_kwargs = kwargs.copy()
            eightbit_kwargs.update(
                {
                    "has_fp16_weights": target.state.has_fp16_weights,
                    "memory_efficient_backward": target.state.memory_efficient_backward,
                    "threshold": target.state.threshold,
                    "index": target.index,
                }
            )
            new_module = Linear8bitLt(target, adapter_name, **eightbit_kwargs)

        return new_module


if is_bnb_4bit_available():

    class Linear4bit(torch.nn.Module, LoraLayer):
        # Lora implemented in a dense layer
        def __init__(
            self,
            base_layer: torch.nn.Module,
            adapter_name: str,
            r: int = 0,
            lora_alpha: int = 1,
            lora_dropout: float = 0.0,
            init_lora_weights: bool = True,
            use_rslora: bool = False,
            use_dora: bool = False,
            **kwargs,
        ) -> None:
            super().__init__()
            LoraLayer.__init__(self, base_layer)
            self.fan_in_fan_out = False

            self._active_adapter = adapter_name
            self.update_layer(
                adapter_name,
                r,
                lora_alpha=lora_alpha,
                lora_dropout=lora_dropout,
                init_lora_weights=init_lora_weights,
                use_rslora=use_rslora,
                use_dora=use_dora,
            )

        def merge(self, safe_merge: bool = False, adapter_names: Optional[list[str]] = None) -> None:
            """
            Merge the active adapter weights into the base weights

            Args:
                safe_merge (`bool`, *optional*):
                    If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                    before merging the weights. This is useful if you want to check if the merge operation will produce
                    NaNs. Defaults to `False`.
                adapter_names (`list[str]`, *optional*):
                    The list of adapter names that should be merged. If None, all active adapters will be merged.
                    Defaults to `None`.
            """
            adapter_names = check_adapters_to_merge(self, adapter_names)
            if not adapter_names:
                # no adapter to merge
                return

            for active_adapter in adapter_names:
                if active_adapter not in self.lora_A.keys():
                    continue

                warnings.warn(
                    "Merge lora module to 4-bit linear may get different generations due to rounding errors."
                )
                # Refer to https://gist.github.com/ChrisHayduk/1a53463331f52dca205e55982baf9930
                weight = self.get_base_layer().weight
                kwargs = weight.__dict__
                lora_data = self.get_delta_weight(active_adapter)

                output = dequantize_bnb_weight(weight, state=weight.quant_state)
                if not self.use_dora[active_adapter]:
                    w_data = output + lora_data
                else:
                    # handle dora
                    # since output already includes scaling, set it to 1 here
                    weight_norm = self._get_weight_norm(output, lora_data, scaling=1).detach()
                    # We need to cache weight_norm because it has to be based on the original weights. We
                    # cannot calculate it on the fly based on the merged weights when unmerging because its a
                    # different value
                    self._cache_store(f"{active_adapter}-weight_norm", weight_norm)
                    dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                    w_data = dora_factor.view(-1, 1) * (output + lora_data)

                if safe_merge and not torch.isfinite(w_data).all():
                    raise ValueError(
                        f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                    )
                if "bnb_quantized" in kwargs:
                    kwargs["bnb_quantized"] = False
                self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to(
                    weight.device
                )
                self.merged_adapters.append(active_adapter)

        def unmerge(self) -> None:
            """
            This method unmerges all merged adapter layers from the base weights.
            """
            if not self.merged:
                warnings.warn("Already unmerged. Nothing to do.")
                return

            while len(self.merged_adapters) > 0:
                active_adapter = self.merged_adapters.pop()
                if active_adapter not in self.lora_A.keys():
                    continue
                warnings.warn(
                    "Unmerge lora module to 4-bit linear may get different generations due to rounding errors."
                )

                lora_data = self.get_delta_weight(active_adapter)
                weight = self.get_base_layer().weight
                kwargs = weight.__dict__
                output = dequantize_bnb_weight(weight, state=weight.quant_state)

                if not self.use_dora[active_adapter]:
                    w_data = output - lora_data
                else:
                    weight_norm = self._cache_pop(f"{active_adapter}-weight_norm")
                    dora_factor = self.lora_magnitude_vector[active_adapter] / weight_norm
                    w_data = output.data / dora_factor.view(-1, 1) - lora_data

                if "bnb_quantized" in kwargs:
                    kwargs["bnb_quantized"] = False
                self.get_base_layer().weight = bnb.nn.Params4bit(w_data.to("cpu"), requires_grad=False, **kwargs).to(
                    weight.device
                )

        def get_delta_weight(self, adapter):
            return (
                transpose(
                    self.lora_B[adapter].weight @ self.lora_A[adapter].weight,
                    False,
                )
                * self.scaling[adapter]
            )

        def _mixed_batch_forward(
            self, x: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
        ) -> torch.Tensor:
            # This is a special method that handles the case when users pass the argument `adapter_names`. This is an
            # extra argument that allows mixing different adapters in the same batch at inference time.
            result = self.base_layer(x, *args, **kwargs)

            unique_adapters = set(adapter_names)
            sub_batch_indices_list = []
            for adapter in unique_adapters:
                sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])

            for i, active_adapter in enumerate(unique_adapters):
                if active_adapter == "__base__":
                    continue
                if active_adapter not in self.lora_A.keys():
                    continue

                lora_A = self.lora_A[active_adapter]
                lora_B = self.lora_B[active_adapter]
                dropout = self.lora_dropout[active_adapter]
                scaling = self.scaling[active_adapter]

                requires_conversion = not torch.is_autocast_enabled()
                if requires_conversion:
                    expected_dtype = result.dtype
                    x = x.to(lora_A.weight.dtype)

                # getting the sub-batch, passing it to LoRA layers and updating the corresponding indices of the linear
                # layer output
                sub_batch = x[sub_batch_indices_list[i]]
                output = lora_B(lora_A(dropout(sub_batch))) * scaling
                if requires_conversion:
                    output = output.to(expected_dtype)
                result[sub_batch_indices_list[i]] += output

            return result

        def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
            self._check_forward_args(x, *args, **kwargs)
            adapter_names = kwargs.pop("adapter_names", None)

            if self.disable_adapters:
                if self.merged:
                    self.unmerge()
                result = self.base_layer(x, *args, **kwargs)
            elif adapter_names is not None:
                result = self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)
            elif self.merged:
                result = self.base_layer(x, *args, **kwargs)
            else:
                result = self.base_layer(x, *args, **kwargs)
                # As per Tim Dettmers, for 4bit, we need to defensively clone here.
                # The reason is that in some cases, an error can occur that backprop
                # does not work on a manipulated view. This issue may be solved with
                # newer PyTorch versions but this would need extensive testing to be
                # sure.
                result = result.clone()

                for active_adapter in self.active_adapters:
                    if active_adapter not in self.lora_A.keys():
                        continue
                    lora_A = self.lora_A[active_adapter]
                    lora_B = self.lora_B[active_adapter]
                    dropout = self.lora_dropout[active_adapter]
                    scaling = self.scaling[active_adapter]

                    requires_conversion = not torch.is_autocast_enabled()
                    if requires_conversion:
                        expected_dtype = result.dtype
                        x = x.to(lora_A.weight.dtype)

                    if not self.use_dora[active_adapter]:
                        output = lora_B(lora_A(dropout(x))) * scaling
                    else:
                        output = self._apply_dora(x, lora_A, lora_B, scaling, active_adapter)
                    if requires_conversion:
                        output = output.to(expected_dtype)

                    result = result + output

            return result

        def __repr__(self) -> str:
            rep = super().__repr__()
            return "lora." + rep

    def dispatch_bnb_4bit(target: torch.nn.Module, adapter_name: str, **kwargs):
        new_module = None

        if isinstance(target, BaseTunerLayer):
            target_base_layer = target.get_base_layer()
        else:
            target_base_layer = target

        loaded_in_4bit = kwargs.get("loaded_in_4bit", False)
        if loaded_in_4bit and is_bnb_4bit_available() and isinstance(target_base_layer, bnb.nn.Linear4bit):
            fourbit_kwargs = kwargs.copy()
            fourbit_kwargs.update(
                {
                    "compute_dtype": target_base_layer.compute_dtype,
                    "compress_statistics": target_base_layer.weight.compress_statistics,
                    "quant_type": target_base_layer.weight.quant_type,
                }
            )
            new_module = Linear4bit(target, adapter_name, **fourbit_kwargs)

        return new_module