File size: 13,961 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from typing import Any, List, Optional

import torch
import torch.nn as nn
from transformers.pytorch_utils import Conv1D

from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils import transpose


class IA3Layer(BaseTunerLayer):
    # All names of layers that may contain adapter weights
    adapter_layer_names = ("ia3_l",)

    def __init__(self, base_layer: nn.Module, is_feedforward: bool, **kwargs) -> None:
        self.base_layer = base_layer
        self.ia3_l = nn.ParameterDict({})
        # Mark the weight as unmerged
        self._disable_adapters = False
        self.merged_adapters = []
        self.is_feedforward = is_feedforward

        base_layer = self.get_base_layer()
        if isinstance(base_layer, nn.Linear):
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif isinstance(base_layer, nn.Conv2d):
            in_features, out_features = base_layer.in_channels, base_layer.out_channels
        elif isinstance(base_layer, nn.Embedding):
            in_features, out_features = base_layer.num_embeddings, base_layer.embedding_dim
        elif isinstance(base_layer, Conv1D):
            in_features, out_features = (
                base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
            )
        else:
            raise ValueError(f"Unsupported layer type {type(base_layer)}")
        self.in_features = in_features
        self.out_features = out_features

    def update_layer(self, adapter_name, init_ia3_weights):
        # This code works for linear layers, override for other layer types
        # Actual trainable parameters
        if self.is_feedforward:
            weight = torch.randn((1, self.in_features))
        else:
            weight = torch.randn((self.out_features, 1))
        self.ia3_l[adapter_name] = nn.Parameter(weight)
        if init_ia3_weights:
            self.reset_ia3_parameters(adapter_name)
        self.to(self.get_base_layer().weight.device)
        self.set_adapter(self.active_adapters)

    def reset_ia3_parameters(self, adapter_name):
        if adapter_name in self.ia3_l.keys():
            # initialize learned vector with torch.ones
            nn.init.constant_(self.ia3_l[adapter_name], 1.0)


class Linear(nn.Module, IA3Layer):
    # (IA)^3 implemented in a dense layer
    def __init__(
        self,
        base_layer: nn.Module,
        adapter_name: str,
        fan_in_fan_out: bool = False,  # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        is_feedforward: bool = False,  # Set to True if the layer is treated as a feedforward layer
        is_target_conv_1d_layer: bool = False,  # whether target module is a conv1d layer. useful while unloading later
        init_ia3_weights: bool = True,  # whether to initialize IA3 weights
        **kwargs,
    ) -> None:
        super().__init__()
        IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward)
        self.fan_in_fan_out = fan_in_fan_out
        self.is_target_conv_1d_layer = is_target_conv_1d_layer
        self._active_adapter = adapter_name
        self.update_layer(adapter_name, init_ia3_weights)

    def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`List[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.ia3_l.keys():
                base_layer = self.get_base_layer()
                ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out)
                orig_dtype = base_layer.weight.data.dtype
                if safe_merge:
                    orig_weights = base_layer.weight.data
                    orig_weights = torch.mul(orig_weights, ia3_l)

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )
                    base_layer.weight.data = orig_weights.to(orig_dtype)
                else:
                    base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_l).to(orig_dtype)

                if not self.is_feedforward and (base_layer.bias is not None):
                    scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape)
                    orig_dtype = base_layer.bias.data.dtype
                    base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data).to(orig_dtype)

                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return

        warnings.warn("Unmerge result can be inaccurate for (IA)^3.")
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.ia3_l.keys():
                base_layer = self.get_base_layer()
                # Add tolerace to avoid division by zero
                ia3_l = transpose(self.ia3_l[active_adapter].data, self.fan_in_fan_out) + 1e-8
                orig_dtype = base_layer.weight.data.dtype
                base_layer.weight.data = torch.div(base_layer.weight.data, ia3_l).to(orig_dtype)

                if not self.is_feedforward and (base_layer.bias is not None):
                    scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape)
                    orig_dtype = base_layer.bias.data.dtype
                    base_layer.bias.data = torch.div(base_layer.bias.data, scaling.data + 1e-8).to(orig_dtype)

    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        dtype = previous_dtype = x.dtype
        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            ia3_scaling = 1
            for active_adapter in self.active_adapters:
                if active_adapter not in self.ia3_l.keys():
                    continue
                dtype = self.ia3_l[active_adapter].dtype
                ia3_scaling *= self.ia3_l[active_adapter].flatten()

            if self.is_feedforward:
                x = x.to(dtype)
                # TODO: weight.dtype can be != self.ia3_l[self.active_adapters].dtype
                # e.g. bf16 vs fp32. Is that okay?
                interm = (x * ia3_scaling).to(previous_dtype)
                result = self.base_layer(interm, *args, **kwargs)
            else:
                result = self.base_layer(x, *args, **kwargs)
                result_dtype = result.dtype
                result = (result * ia3_scaling).to(result_dtype)

        return result


class Conv2d(nn.Module, IA3Layer):
    def __init__(
        self,
        base_layer: nn.Module,
        adapter_name: str,
        fan_in_fan_out: bool = False,  # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        is_feedforward: bool = False,  # Set to True if the layer is treated as a feedforward layer
        init_ia3_weights: bool = True,
        **kwargs,
    ) -> None:
        super().__init__()
        IA3Layer.__init__(self, base_layer, is_feedforward=is_feedforward)
        self.fan_in_fan_out = fan_in_fan_out
        self._active_adapter = adapter_name

        self.update_layer(adapter_name, init_ia3_weights)

    def update_layer(self, adapter_name, init_ia3_weights):
        # Actual trainable parameters
        if self.is_feedforward:
            weight = torch.randn((1, self.in_features, 1, 1))
        else:
            weight = torch.randn((1, self.out_features, 1, 1))
        self.ia3_l[adapter_name] = nn.Parameter(weight)
        if init_ia3_weights:
            self.reset_ia3_parameters(adapter_name)
        self.to(self.get_base_layer().weight.device)
        self.set_adapter(self.active_adapters)

    def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`List[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.ia3_l.keys():
                base_layer = self.get_base_layer()
                ia3_scaling = self.ia3_l[active_adapter].data
                if not self.is_feedforward:
                    ia3_scaling = ia3_scaling.permute(1, 0, 2, 3)

                if safe_merge:
                    output_weight = torch.mul(base_layer.weight.data, ia3_scaling).clone()

                    if not torch.isfinite(output_weight).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )

                    base_layer.weight.data = output_weight
                else:
                    base_layer.weight.data = torch.mul(base_layer.weight.data, ia3_scaling)

                if not self.is_feedforward and (base_layer.bias is not None):
                    scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape)
                    base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data)

                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        """
        This method unmerges all merged adapter layers from the base weights.
        """
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return

        warnings.warn("Unmerge result can be inaccurate for (IA)^3.")
        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.ia3_l.keys():
                base_layer = self.get_base_layer()
                # divide by (IA)^3 vector. Add tolerace to avoid division by zero
                ia3_scaling = self.ia3_l[active_adapter].data
                if not self.is_feedforward:
                    ia3_scaling = ia3_scaling.permute(1, 0, 2, 3)
                base_layer.weight.data = torch.div(base_layer.weight.data, ia3_scaling + 1e-8)

                if not self.is_feedforward and (base_layer.bias is not None):
                    scaling = self.ia3_l[active_adapter].reshape(base_layer.bias.shape)
                    base_layer.bias.data = torch.mul(base_layer.bias.data, scaling.data)

    def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        dtype = previous_dtype = x.dtype

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            ia3_scaling = 1
            for active_adapter in self.active_adapters:
                if active_adapter not in self.ia3_l.keys():
                    continue
                dtype = self.ia3_l[active_adapter].dtype
                ia3_scaling *= self.ia3_l[active_adapter]

            if self.is_feedforward:
                x = x.to(dtype)
                # TODO: weight.dtype can be != self.ia3_l[self.active_adapters].dtype
                # e.g. bf16 vs fp32. Is that okay?
                interm = (x * ia3_scaling).to(self.get_base_layer().weight.dtype)
                result = self.base_layer(interm, *args, **kwargs)
            else:
                result = self.base_layer(x, *args, **kwargs)
                result = result.to(dtype) * ia3_scaling

        result = result.to(previous_dtype)
        return result