File size: 16,201 Bytes
ad06aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Copyright (c) 2023, Tencent Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import torch
import torch.nn as nn
import nvdiffrast.torch as dr
from einops import rearrange, repeat

from .encoder.dino_wrapper import DinoWrapper
from .decoder.transformer import TriplaneTransformer
from .renderer.synthesizer_mesh import TriplaneSynthesizer
from .geometry.camera.perspective_camera import PerspectiveCamera
from .geometry.render.neural_render import NeuralRender
from .geometry.rep_3d.flexicubes_geometry import FlexiCubesGeometry
from ..utils.mesh_util import xatlas_uvmap


class InstantMesh(nn.Module):
    """
    Full model of the large reconstruction model.
    """
    def __init__(
        self, 
        encoder_freeze: bool = False, 
        encoder_model_name: str = 'facebook/dino-vitb16', 
        encoder_feat_dim: int = 768,
        transformer_dim: int = 1024, 
        transformer_layers: int = 16, 
        transformer_heads: int = 16,
        triplane_low_res: int = 32, 
        triplane_high_res: int = 64, 
        triplane_dim: int = 80,
        rendering_samples_per_ray: int = 128,
        grid_res: int = 128, 
        grid_scale: float = 2.0,
    ):
        super().__init__()
        
        # attributes
        self.grid_res = grid_res
        self.grid_scale = grid_scale
        self.deformation_multiplier = 4.0

        # modules
        self.encoder = DinoWrapper(
            model_name=encoder_model_name,
            freeze=encoder_freeze,
        )

        self.transformer = TriplaneTransformer(
            inner_dim=transformer_dim, 
            num_layers=transformer_layers, 
            num_heads=transformer_heads,
            image_feat_dim=encoder_feat_dim,
            triplane_low_res=triplane_low_res, 
            triplane_high_res=triplane_high_res, 
            triplane_dim=triplane_dim,
        )
        
        self.synthesizer = TriplaneSynthesizer(
            triplane_dim=triplane_dim, 
            samples_per_ray=rendering_samples_per_ray,
        )

    def init_flexicubes_geometry(self, device, fovy=50.0):
        camera = PerspectiveCamera(fovy=fovy, device=device)
        renderer = NeuralRender(device, camera_model=camera)
        self.geometry = FlexiCubesGeometry(
            grid_res=self.grid_res, 
            scale=self.grid_scale, 
            renderer=renderer, 
            render_type='neural_render',
            device=device,
        )

    def forward_planes(self, images, cameras):
        # images: [B, V, C_img, H_img, W_img]
        # cameras: [B, V, 16]
        B = images.shape[0]

        # encode images
        image_feats = self.encoder(images, cameras)
        image_feats = rearrange(image_feats, '(b v) l d -> b (v l) d', b=B)
        
        # decode triplanes
        planes = self.transformer(image_feats)

        return planes
    
    def get_sdf_deformation_prediction(self, planes):
        '''
        Predict SDF and deformation for tetrahedron vertices
        :param planes: triplane feature map for the geometry
        '''
        init_position = self.geometry.verts.unsqueeze(0).expand(planes.shape[0], -1, -1)
        
        # Step 1: predict the SDF and deformation
        sdf, deformation, weight = torch.utils.checkpoint.checkpoint(
            self.synthesizer.get_geometry_prediction,
            planes, 
            init_position, 
            self.geometry.indices,
            use_reentrant=False,
        )

        # Step 2: Normalize the deformation to avoid the flipped triangles.
        deformation = 1.0 / (self.grid_res * self.deformation_multiplier) * torch.tanh(deformation)
        sdf_reg_loss = torch.zeros(sdf.shape[0], device=sdf.device, dtype=torch.float32)

        ####
        # Step 3: Fix some sdf if we observe empty shape (full positive or full negative)
        sdf_bxnxnxn = sdf.reshape((sdf.shape[0], self.grid_res + 1, self.grid_res + 1, self.grid_res + 1))
        sdf_less_boundary = sdf_bxnxnxn[:, 1:-1, 1:-1, 1:-1].reshape(sdf.shape[0], -1)
        pos_shape = torch.sum((sdf_less_boundary > 0).int(), dim=-1)
        neg_shape = torch.sum((sdf_less_boundary < 0).int(), dim=-1)
        zero_surface = torch.bitwise_or(pos_shape == 0, neg_shape == 0)
        if torch.sum(zero_surface).item() > 0:
            update_sdf = torch.zeros_like(sdf[0:1])
            max_sdf = sdf.max()
            min_sdf = sdf.min()
            update_sdf[:, self.geometry.center_indices] += (1.0 - min_sdf)  # greater than zero
            update_sdf[:, self.geometry.boundary_indices] += (-1 - max_sdf)  # smaller than zero
            new_sdf = torch.zeros_like(sdf)
            for i_batch in range(zero_surface.shape[0]):
                if zero_surface[i_batch]:
                    new_sdf[i_batch:i_batch + 1] += update_sdf
            update_mask = (new_sdf == 0).float()
            # Regulraization here is used to push the sdf to be a different sign (make it not fully positive or fully negative)
            sdf_reg_loss = torch.abs(sdf).mean(dim=-1).mean(dim=-1)
            sdf_reg_loss = sdf_reg_loss * zero_surface.float()
            sdf = sdf * update_mask + new_sdf * (1 - update_mask)

        # Step 4: Here we remove the gradient for the bad sdf (full positive or full negative)
        final_sdf = []
        final_def = []
        for i_batch in range(zero_surface.shape[0]):
            if zero_surface[i_batch]:
                final_sdf.append(sdf[i_batch: i_batch + 1].detach())
                final_def.append(deformation[i_batch: i_batch + 1].detach())
            else:
                final_sdf.append(sdf[i_batch: i_batch + 1])
                final_def.append(deformation[i_batch: i_batch + 1])
        sdf = torch.cat(final_sdf, dim=0)
        deformation = torch.cat(final_def, dim=0)
        return sdf, deformation, sdf_reg_loss, weight
    
    def get_geometry_prediction(self, planes=None):
        '''
        Function to generate mesh with give triplanes
        :param planes: triplane features
        '''
        # Step 1: first get the sdf and deformation value for each vertices in the tetrahedon grid.
        sdf, deformation, sdf_reg_loss, weight = self.get_sdf_deformation_prediction(planes)
        v_deformed = self.geometry.verts.unsqueeze(dim=0).expand(sdf.shape[0], -1, -1) + deformation
        tets = self.geometry.indices
        n_batch = planes.shape[0]
        v_list = []
        f_list = []
        flexicubes_surface_reg_list = []
        
        # Step 2: Using marching tet to obtain the mesh
        for i_batch in range(n_batch):
            verts, faces, flexicubes_surface_reg = self.geometry.get_mesh(
                v_deformed[i_batch], 
                sdf[i_batch].squeeze(dim=-1),
                with_uv=False, 
                indices=tets, 
                weight_n=weight[i_batch].squeeze(dim=-1),
                is_training=self.training,
            )
            flexicubes_surface_reg_list.append(flexicubes_surface_reg)
            v_list.append(verts)
            f_list.append(faces)
        
        flexicubes_surface_reg = torch.cat(flexicubes_surface_reg_list).mean()
        flexicubes_weight_reg = (weight ** 2).mean()
        
        return v_list, f_list, sdf, deformation, v_deformed, (sdf_reg_loss, flexicubes_surface_reg, flexicubes_weight_reg)
    
    def get_texture_prediction(self, planes, tex_pos, hard_mask=None):
        '''
        Predict Texture given triplanes
        :param planes: the triplane feature map
        :param tex_pos: Position we want to query the texture field
        :param hard_mask: 2D silhoueete of the rendered image
        '''
        tex_pos = torch.cat(tex_pos, dim=0)
        if not hard_mask is None:
            tex_pos = tex_pos * hard_mask.float()
        batch_size = tex_pos.shape[0]
        tex_pos = tex_pos.reshape(batch_size, -1, 3)
        ###################
        # We use mask to get the texture location (to save the memory)
        if hard_mask is not None:
            n_point_list = torch.sum(hard_mask.long().reshape(hard_mask.shape[0], -1), dim=-1)
            sample_tex_pose_list = []
            max_point = n_point_list.max()
            expanded_hard_mask = hard_mask.reshape(batch_size, -1, 1).expand(-1, -1, 3) > 0.5
            for i in range(tex_pos.shape[0]):
                tex_pos_one_shape = tex_pos[i][expanded_hard_mask[i]].reshape(1, -1, 3)
                if tex_pos_one_shape.shape[1] < max_point:
                    tex_pos_one_shape = torch.cat(
                        [tex_pos_one_shape, torch.zeros(
                            1, max_point - tex_pos_one_shape.shape[1], 3,
                            device=tex_pos_one_shape.device, dtype=torch.float32)], dim=1)
                sample_tex_pose_list.append(tex_pos_one_shape)
            tex_pos = torch.cat(sample_tex_pose_list, dim=0)

        tex_feat = torch.utils.checkpoint.checkpoint(
            self.synthesizer.get_texture_prediction,
            planes, 
            tex_pos,
            use_reentrant=False,
        )

        if hard_mask is not None:
            final_tex_feat = torch.zeros(
                planes.shape[0], hard_mask.shape[1] * hard_mask.shape[2], tex_feat.shape[-1], device=tex_feat.device)
            expanded_hard_mask = hard_mask.reshape(hard_mask.shape[0], -1, 1).expand(-1, -1, final_tex_feat.shape[-1]) > 0.5
            for i in range(planes.shape[0]):
                final_tex_feat[i][expanded_hard_mask[i]] = tex_feat[i][:n_point_list[i]].reshape(-1)
            tex_feat = final_tex_feat

        return tex_feat.reshape(planes.shape[0], hard_mask.shape[1], hard_mask.shape[2], tex_feat.shape[-1])
    
    def render_mesh(self, mesh_v, mesh_f, cam_mv, render_size=256):
        '''
        Function to render a generated mesh with nvdiffrast
        :param mesh_v: List of vertices for the mesh
        :param mesh_f: List of faces for the mesh
        :param cam_mv:  4x4 rotation matrix
        :return:
        '''
        return_value_list = []
        for i_mesh in range(len(mesh_v)):
            return_value = self.geometry.render_mesh(
                mesh_v[i_mesh],
                mesh_f[i_mesh].int(),
                cam_mv[i_mesh],
                resolution=render_size,
                hierarchical_mask=False
            )
            return_value_list.append(return_value)

        return_keys = return_value_list[0].keys()
        return_value = dict()
        for k in return_keys:
            value = [v[k] for v in return_value_list]
            return_value[k] = value

        mask = torch.cat(return_value['mask'], dim=0)
        hard_mask = torch.cat(return_value['hard_mask'], dim=0)
        tex_pos = return_value['tex_pos']
        depth = torch.cat(return_value['depth'], dim=0)
        normal = torch.cat(return_value['normal'], dim=0)
        return mask, hard_mask, tex_pos, depth, normal
    
    def forward_geometry(self, planes, render_cameras, render_size=256):
        '''
        Main function of our Generator. It first generate 3D mesh, then render it into 2D image
        with given `render_cameras`.
        :param planes: triplane features
        :param render_cameras: cameras to render generated 3D shape
        '''
        B, NV = render_cameras.shape[:2]

        # Generate 3D mesh first
        mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)

        # Render the mesh into 2D image (get 3d position of each image plane)
        cam_mv = render_cameras
        run_n_view = cam_mv.shape[1]
        antilias_mask, hard_mask, tex_pos, depth, normal = self.render_mesh(mesh_v, mesh_f, cam_mv, render_size=render_size)

        tex_hard_mask = hard_mask
        tex_pos = [torch.cat([pos[i_view:i_view + 1] for i_view in range(run_n_view)], dim=2) for pos in tex_pos]
        tex_hard_mask = torch.cat(
            [torch.cat(
                [tex_hard_mask[i * run_n_view + i_view: i * run_n_view + i_view + 1]
                 for i_view in range(run_n_view)], dim=2)
                for i in range(planes.shape[0])], dim=0)

        # Querying the texture field to predict the texture feature for each pixel on the image
        tex_feat = self.get_texture_prediction(planes, tex_pos, tex_hard_mask)
        background_feature = torch.ones_like(tex_feat)      # white background

        # Merge them together
        img_feat = tex_feat * tex_hard_mask + background_feature * (1 - tex_hard_mask)

        # We should split it back to the original image shape
        img_feat = torch.cat(
            [torch.cat(
                [img_feat[i:i + 1, :, render_size * i_view: render_size * (i_view + 1)]
                 for i_view in range(run_n_view)], dim=0) for i in range(len(tex_pos))], dim=0)

        img = img_feat.clamp(0, 1).permute(0, 3, 1, 2).unflatten(0, (B, NV))
        antilias_mask = antilias_mask.permute(0, 3, 1, 2).unflatten(0, (B, NV))
        depth = -depth.permute(0, 3, 1, 2).unflatten(0, (B, NV))        # transform negative depth to positive
        normal = normal.permute(0, 3, 1, 2).unflatten(0, (B, NV))

        out = {
            'img': img,
            'mask': antilias_mask,
            'depth': depth,
            'normal': normal,
            'sdf': sdf,
            'mesh_v': mesh_v,
            'mesh_f': mesh_f,
            'sdf_reg_loss': sdf_reg_loss,
        }
        return out

    def forward(self, images, cameras, render_cameras, render_size: int):
        # images: [B, V, C_img, H_img, W_img]
        # cameras: [B, V, 16]
        # render_cameras: [B, M, D_cam_render]
        # render_size: int
        B, M = render_cameras.shape[:2]

        planes = self.forward_planes(images, cameras)
        out = self.forward_geometry(planes, render_cameras, render_size=render_size)

        return {
            'planes': planes,
            **out
        }

    def extract_mesh(
        self, 
        planes: torch.Tensor, 
        use_texture_map: bool = False,
        texture_resolution: int = 1024,
        **kwargs,
    ):
        '''
        Extract a 3D mesh from FlexiCubes. Only support batch_size 1.
        :param planes: triplane features
        :param use_texture_map: use texture map or vertex color
        :param texture_resolution: the resolution of texure map
        '''
        assert planes.shape[0] == 1
        device = planes.device

        # predict geometry first
        mesh_v, mesh_f, sdf, deformation, v_deformed, sdf_reg_loss = self.get_geometry_prediction(planes)
        vertices, faces = mesh_v[0], mesh_f[0]

        if not use_texture_map:
            # query vertex colors
            vertices_tensor = vertices.unsqueeze(0)
            vertices_colors = self.synthesizer.get_texture_prediction(
                planes, vertices_tensor).clamp(0, 1).squeeze(0).cpu().numpy()
            vertices_colors = (vertices_colors * 255).astype(np.uint8)

            return vertices.cpu().numpy(), faces.cpu().numpy(), vertices_colors

        # use x-atlas to get uv mapping for the mesh
        ctx = dr.RasterizeCudaContext(device=device)
        uvs, mesh_tex_idx, gb_pos, tex_hard_mask = xatlas_uvmap(
            self.geometry.renderer.ctx, vertices, faces, resolution=texture_resolution)
        tex_hard_mask = tex_hard_mask.float()

        # query the texture field to get the RGB color for texture map
        tex_feat = self.get_texture_prediction(
            planes, [gb_pos], tex_hard_mask)
        background_feature = torch.zeros_like(tex_feat)
        img_feat = torch.lerp(background_feature, tex_feat, tex_hard_mask)
        texture_map = img_feat.permute(0, 3, 1, 2).squeeze(0)

        return vertices, faces, uvs, mesh_tex_idx, texture_map