Spaces:
Running
on
Zero
Running
on
Zero
File size: 21,902 Bytes
ad06aed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 |
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION & AFFILIATES and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION & AFFILIATES is strictly prohibited.
import torch
import numpy as np
import os
from . import Geometry
from .dmtet_utils import get_center_boundary_index
import torch.nn.functional as F
###############################################################################
# DMTet utility functions
###############################################################################
def create_mt_variable(device):
triangle_table = torch.tensor(
[
[-1, -1, -1, -1, -1, -1],
[1, 0, 2, -1, -1, -1],
[4, 0, 3, -1, -1, -1],
[1, 4, 2, 1, 3, 4],
[3, 1, 5, -1, -1, -1],
[2, 3, 0, 2, 5, 3],
[1, 4, 0, 1, 5, 4],
[4, 2, 5, -1, -1, -1],
[4, 5, 2, -1, -1, -1],
[4, 1, 0, 4, 5, 1],
[3, 2, 0, 3, 5, 2],
[1, 3, 5, -1, -1, -1],
[4, 1, 2, 4, 3, 1],
[3, 0, 4, -1, -1, -1],
[2, 0, 1, -1, -1, -1],
[-1, -1, -1, -1, -1, -1]
], dtype=torch.long, device=device)
num_triangles_table = torch.tensor([0, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 0], dtype=torch.long, device=device)
base_tet_edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=device)
v_id = torch.pow(2, torch.arange(4, dtype=torch.long, device=device))
return triangle_table, num_triangles_table, base_tet_edges, v_id
def sort_edges(edges_ex2):
with torch.no_grad():
order = (edges_ex2[:, 0] > edges_ex2[:, 1]).long()
order = order.unsqueeze(dim=1)
a = torch.gather(input=edges_ex2, index=order, dim=1)
b = torch.gather(input=edges_ex2, index=1 - order, dim=1)
return torch.stack([a, b], -1)
###############################################################################
# marching tetrahedrons (differentiable)
###############################################################################
def marching_tets(pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id):
with torch.no_grad():
occ_n = sdf_n > 0
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
occ_sum = torch.sum(occ_fx4, -1)
valid_tets = (occ_sum > 0) & (occ_sum < 4)
occ_sum = occ_sum[valid_tets]
# find all vertices
all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2)
all_edges = sort_edges(all_edges)
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device)
idx_map = mapping[idx_map] # map edges to verts
interp_v = unique_edges[mask_edges] # .long()
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
edges_to_interp_sdf[:, -1] *= -1
denominator = edges_to_interp_sdf.sum(1, keepdim=True)
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
idx_map = idx_map.reshape(-1, 6)
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
num_triangles = num_triangles_table[tetindex]
# Generate triangle indices
faces = torch.cat(
(
torch.gather(
input=idx_map[num_triangles == 1], dim=1,
index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
torch.gather(
input=idx_map[num_triangles == 2], dim=1,
index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
), dim=0)
return verts, faces
def create_tetmesh_variables(device='cuda'):
tet_table = torch.tensor(
[[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1],
[0, 4, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1],
[1, 0, 8, 7, 0, 5, 8, 7, 0, 5, 6, 8],
[2, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1],
[2, 0, 9, 7, 0, 4, 9, 7, 0, 4, 6, 9],
[2, 1, 9, 5, 1, 4, 9, 5, 1, 4, 8, 9],
[6, 0, 1, 2, 6, 1, 2, 8, 6, 8, 2, 9],
[3, 6, 8, 9, -1, -1, -1, -1, -1, -1, -1, -1],
[3, 0, 9, 8, 0, 4, 9, 8, 0, 4, 5, 9],
[3, 1, 9, 6, 1, 4, 9, 6, 1, 4, 7, 9],
[5, 0, 1, 3, 5, 1, 3, 7, 5, 7, 3, 9],
[3, 2, 8, 6, 2, 5, 8, 6, 2, 5, 7, 8],
[4, 0, 2, 3, 4, 2, 3, 7, 4, 7, 3, 8],
[4, 1, 2, 3, 4, 2, 3, 5, 4, 5, 3, 6],
[-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1]], dtype=torch.long, device=device)
num_tets_table = torch.tensor([0, 1, 1, 3, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 0], dtype=torch.long, device=device)
return tet_table, num_tets_table
def marching_tets_tetmesh(
pos_nx3, sdf_n, tet_fx4, triangle_table, num_triangles_table, base_tet_edges, v_id,
return_tet_mesh=False, ori_v=None, num_tets_table=None, tet_table=None):
with torch.no_grad():
occ_n = sdf_n > 0
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
occ_sum = torch.sum(occ_fx4, -1)
valid_tets = (occ_sum > 0) & (occ_sum < 4)
occ_sum = occ_sum[valid_tets]
# find all vertices
all_edges = tet_fx4[valid_tets][:, base_tet_edges].reshape(-1, 2)
all_edges = sort_edges(all_edges)
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
unique_edges = unique_edges.long()
mask_edges = occ_n[unique_edges.reshape(-1)].reshape(-1, 2).sum(-1) == 1
mapping = torch.ones((unique_edges.shape[0]), dtype=torch.long, device=sdf_n.device) * -1
mapping[mask_edges] = torch.arange(mask_edges.sum(), dtype=torch.long, device=sdf_n.device)
idx_map = mapping[idx_map] # map edges to verts
interp_v = unique_edges[mask_edges] # .long()
edges_to_interp = pos_nx3[interp_v.reshape(-1)].reshape(-1, 2, 3)
edges_to_interp_sdf = sdf_n[interp_v.reshape(-1)].reshape(-1, 2, 1)
edges_to_interp_sdf[:, -1] *= -1
denominator = edges_to_interp_sdf.sum(1, keepdim=True)
edges_to_interp_sdf = torch.flip(edges_to_interp_sdf, [1]) / denominator
verts = (edges_to_interp * edges_to_interp_sdf).sum(1)
idx_map = idx_map.reshape(-1, 6)
tetindex = (occ_fx4[valid_tets] * v_id.unsqueeze(0)).sum(-1)
num_triangles = num_triangles_table[tetindex]
# Generate triangle indices
faces = torch.cat(
(
torch.gather(
input=idx_map[num_triangles == 1], dim=1,
index=triangle_table[tetindex[num_triangles == 1]][:, :3]).reshape(-1, 3),
torch.gather(
input=idx_map[num_triangles == 2], dim=1,
index=triangle_table[tetindex[num_triangles == 2]][:, :6]).reshape(-1, 3),
), dim=0)
if not return_tet_mesh:
return verts, faces
occupied_verts = ori_v[occ_n]
mapping = torch.ones((pos_nx3.shape[0]), dtype=torch.long, device="cuda") * -1
mapping[occ_n] = torch.arange(occupied_verts.shape[0], device="cuda")
tet_fx4 = mapping[tet_fx4.reshape(-1)].reshape((-1, 4))
idx_map = torch.cat([tet_fx4[valid_tets] + verts.shape[0], idx_map], -1) # t x 10
tet_verts = torch.cat([verts, occupied_verts], 0)
num_tets = num_tets_table[tetindex]
tets = torch.cat(
(
torch.gather(input=idx_map[num_tets == 1], dim=1, index=tet_table[tetindex[num_tets == 1]][:, :4]).reshape(
-1,
4),
torch.gather(input=idx_map[num_tets == 3], dim=1, index=tet_table[tetindex[num_tets == 3]][:, :12]).reshape(
-1,
4),
), dim=0)
# add fully occupied tets
fully_occupied = occ_fx4.sum(-1) == 4
tet_fully_occupied = tet_fx4[fully_occupied] + verts.shape[0]
tets = torch.cat([tets, tet_fully_occupied])
return verts, faces, tet_verts, tets
###############################################################################
# Compact tet grid
###############################################################################
def compact_tets(pos_nx3, sdf_n, tet_fx4):
with torch.no_grad():
# Find surface tets
occ_n = sdf_n > 0
occ_fx4 = occ_n[tet_fx4.reshape(-1)].reshape(-1, 4)
occ_sum = torch.sum(occ_fx4, -1)
valid_tets = (occ_sum > 0) & (occ_sum < 4) # one value per tet, these are the surface tets
valid_vtx = tet_fx4[valid_tets].reshape(-1)
unique_vtx, idx_map = torch.unique(valid_vtx, dim=0, return_inverse=True)
new_pos = pos_nx3[unique_vtx]
new_sdf = sdf_n[unique_vtx]
new_tets = idx_map.reshape(-1, 4)
return new_pos, new_sdf, new_tets
###############################################################################
# Subdivide volume
###############################################################################
def batch_subdivide_volume(tet_pos_bxnx3, tet_bxfx4, grid_sdf):
device = tet_pos_bxnx3.device
# get new verts
tet_fx4 = tet_bxfx4[0]
edges = [0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3]
all_edges = tet_fx4[:, edges].reshape(-1, 2)
all_edges = sort_edges(all_edges)
unique_edges, idx_map = torch.unique(all_edges, dim=0, return_inverse=True)
idx_map = idx_map + tet_pos_bxnx3.shape[1]
all_values = torch.cat([tet_pos_bxnx3, grid_sdf], -1)
mid_points_pos = all_values[:, unique_edges.reshape(-1)].reshape(
all_values.shape[0], -1, 2,
all_values.shape[-1]).mean(2)
new_v = torch.cat([all_values, mid_points_pos], 1)
new_v, new_sdf = new_v[..., :3], new_v[..., 3]
# get new tets
idx_a, idx_b, idx_c, idx_d = tet_fx4[:, 0], tet_fx4[:, 1], tet_fx4[:, 2], tet_fx4[:, 3]
idx_ab = idx_map[0::6]
idx_ac = idx_map[1::6]
idx_ad = idx_map[2::6]
idx_bc = idx_map[3::6]
idx_bd = idx_map[4::6]
idx_cd = idx_map[5::6]
tet_1 = torch.stack([idx_a, idx_ab, idx_ac, idx_ad], dim=1)
tet_2 = torch.stack([idx_b, idx_bc, idx_ab, idx_bd], dim=1)
tet_3 = torch.stack([idx_c, idx_ac, idx_bc, idx_cd], dim=1)
tet_4 = torch.stack([idx_d, idx_ad, idx_cd, idx_bd], dim=1)
tet_5 = torch.stack([idx_ab, idx_ac, idx_ad, idx_bd], dim=1)
tet_6 = torch.stack([idx_ab, idx_ac, idx_bd, idx_bc], dim=1)
tet_7 = torch.stack([idx_cd, idx_ac, idx_bd, idx_ad], dim=1)
tet_8 = torch.stack([idx_cd, idx_ac, idx_bc, idx_bd], dim=1)
tet_np = torch.cat([tet_1, tet_2, tet_3, tet_4, tet_5, tet_6, tet_7, tet_8], dim=0)
tet_np = tet_np.reshape(1, -1, 4).expand(tet_pos_bxnx3.shape[0], -1, -1)
tet = tet_np.long().to(device)
return new_v, tet, new_sdf
###############################################################################
# Adjacency
###############################################################################
def tet_to_tet_adj_sparse(tet_tx4):
# include self connection!!!!!!!!!!!!!!!!!!!
with torch.no_grad():
t = tet_tx4.shape[0]
device = tet_tx4.device
idx_array = torch.LongTensor(
[0, 1, 2,
1, 0, 3,
2, 3, 0,
3, 2, 1]).to(device).reshape(4, 3).unsqueeze(0).expand(t, -1, -1) # (t, 4, 3)
# get all faces
all_faces = torch.gather(input=tet_tx4.unsqueeze(1).expand(-1, 4, -1), index=idx_array, dim=-1).reshape(
-1,
3) # (tx4, 3)
all_faces_tet_idx = torch.arange(t, device=device).unsqueeze(-1).expand(-1, 4).reshape(-1)
# sort and group
all_faces_sorted, _ = torch.sort(all_faces, dim=1)
all_faces_unique, inverse_indices, counts = torch.unique(
all_faces_sorted, dim=0, return_counts=True,
return_inverse=True)
tet_face_fx3 = all_faces_unique[counts == 2]
counts = counts[inverse_indices] # tx4
valid = (counts == 2)
group = inverse_indices[valid]
# print (inverse_indices.shape, group.shape, all_faces_tet_idx.shape)
_, indices = torch.sort(group)
all_faces_tet_idx_grouped = all_faces_tet_idx[valid][indices]
tet_face_tetidx_fx2 = torch.stack([all_faces_tet_idx_grouped[::2], all_faces_tet_idx_grouped[1::2]], dim=-1)
tet_adj_idx = torch.cat([tet_face_tetidx_fx2, torch.flip(tet_face_tetidx_fx2, [1])])
adj_self = torch.arange(t, device=tet_tx4.device)
adj_self = torch.stack([adj_self, adj_self], -1)
tet_adj_idx = torch.cat([tet_adj_idx, adj_self])
tet_adj_idx = torch.unique(tet_adj_idx, dim=0)
values = torch.ones(
tet_adj_idx.shape[0], device=tet_tx4.device).float()
adj_sparse = torch.sparse.FloatTensor(
tet_adj_idx.t(), values, torch.Size([t, t]))
# normalization
neighbor_num = 1.0 / torch.sparse.sum(
adj_sparse, dim=1).to_dense()
values = torch.index_select(neighbor_num, 0, tet_adj_idx[:, 0])
adj_sparse = torch.sparse.FloatTensor(
tet_adj_idx.t(), values, torch.Size([t, t]))
return adj_sparse
###############################################################################
# Compact grid
###############################################################################
def get_tet_bxfx4x3(bxnxz, bxfx4):
n_batch, z = bxnxz.shape[0], bxnxz.shape[2]
gather_input = bxnxz.unsqueeze(2).expand(
n_batch, bxnxz.shape[1], 4, z)
gather_index = bxfx4.unsqueeze(-1).expand(
n_batch, bxfx4.shape[1], 4, z).long()
tet_bxfx4xz = torch.gather(
input=gather_input, dim=1, index=gather_index)
return tet_bxfx4xz
def shrink_grid(tet_pos_bxnx3, tet_bxfx4, grid_sdf):
with torch.no_grad():
assert tet_pos_bxnx3.shape[0] == 1
occ = grid_sdf[0] > 0
occ_sum = get_tet_bxfx4x3(occ.unsqueeze(0).unsqueeze(-1), tet_bxfx4).reshape(-1, 4).sum(-1)
mask = (occ_sum > 0) & (occ_sum < 4)
# build connectivity graph
adj_matrix = tet_to_tet_adj_sparse(tet_bxfx4[0])
mask = mask.float().unsqueeze(-1)
# Include a one ring of neighbors
for i in range(1):
mask = torch.sparse.mm(adj_matrix, mask)
mask = mask.squeeze(-1) > 0
mapping = torch.zeros((tet_pos_bxnx3.shape[1]), device=tet_pos_bxnx3.device, dtype=torch.long)
new_tet_bxfx4 = tet_bxfx4[:, mask].long()
selected_verts_idx = torch.unique(new_tet_bxfx4)
new_tet_pos_bxnx3 = tet_pos_bxnx3[:, selected_verts_idx]
mapping[selected_verts_idx] = torch.arange(selected_verts_idx.shape[0], device=tet_pos_bxnx3.device)
new_tet_bxfx4 = mapping[new_tet_bxfx4.reshape(-1)].reshape(new_tet_bxfx4.shape)
new_grid_sdf = grid_sdf[:, selected_verts_idx]
return new_tet_pos_bxnx3, new_tet_bxfx4, new_grid_sdf
###############################################################################
# Regularizer
###############################################################################
def sdf_reg_loss(sdf, all_edges):
sdf_f1x6x2 = sdf[all_edges.reshape(-1)].reshape(-1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 0],
(sdf_f1x6x2[..., 1] > 0).float()) + \
torch.nn.functional.binary_cross_entropy_with_logits(
sdf_f1x6x2[..., 1],
(sdf_f1x6x2[..., 0] > 0).float())
return sdf_diff
def sdf_reg_loss_batch(sdf, all_edges):
sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2)
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1])
sdf_f1x6x2 = sdf_f1x6x2[mask]
sdf_diff = torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \
torch.nn.functional.binary_cross_entropy_with_logits(sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float())
return sdf_diff
###############################################################################
# Geometry interface
###############################################################################
class DMTetGeometry(Geometry):
def __init__(
self, grid_res=64, scale=2.0, device='cuda', renderer=None,
render_type='neural_render', args=None):
super(DMTetGeometry, self).__init__()
self.grid_res = grid_res
self.device = device
self.args = args
tets = np.load('data/tets/%d_compress.npz' % (grid_res))
self.verts = torch.from_numpy(tets['vertices']).float().to(self.device)
# Make sure the tet is zero-centered and length is equal to 1
length = self.verts.max(dim=0)[0] - self.verts.min(dim=0)[0]
length = length.max()
mid = (self.verts.max(dim=0)[0] + self.verts.min(dim=0)[0]) / 2.0
self.verts = (self.verts - mid.unsqueeze(dim=0)) / length
if isinstance(scale, list):
self.verts[:, 0] = self.verts[:, 0] * scale[0]
self.verts[:, 1] = self.verts[:, 1] * scale[1]
self.verts[:, 2] = self.verts[:, 2] * scale[1]
else:
self.verts = self.verts * scale
self.indices = torch.from_numpy(tets['tets']).long().to(self.device)
self.triangle_table, self.num_triangles_table, self.base_tet_edges, self.v_id = create_mt_variable(self.device)
self.tet_table, self.num_tets_table = create_tetmesh_variables(self.device)
# Parameters for regularization computation
edges = torch.tensor([0, 1, 0, 2, 0, 3, 1, 2, 1, 3, 2, 3], dtype=torch.long, device=self.device)
all_edges = self.indices[:, edges].reshape(-1, 2)
all_edges_sorted = torch.sort(all_edges, dim=1)[0]
self.all_edges = torch.unique(all_edges_sorted, dim=0)
# Parameters used for fix boundary sdf
self.center_indices, self.boundary_indices = get_center_boundary_index(self.verts)
self.renderer = renderer
self.render_type = render_type
def getAABB(self):
return torch.min(self.verts, dim=0).values, torch.max(self.verts, dim=0).values
def get_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None):
if indices is None:
indices = self.indices
verts, faces = marching_tets(
v_deformed_nx3, sdf_n, indices, self.triangle_table,
self.num_triangles_table, self.base_tet_edges, self.v_id)
faces = torch.cat(
[faces[:, 0:1],
faces[:, 2:3],
faces[:, 1:2], ], dim=-1)
return verts, faces
def get_tet_mesh(self, v_deformed_nx3, sdf_n, with_uv=False, indices=None):
if indices is None:
indices = self.indices
verts, faces, tet_verts, tets = marching_tets_tetmesh(
v_deformed_nx3, sdf_n, indices, self.triangle_table,
self.num_triangles_table, self.base_tet_edges, self.v_id, return_tet_mesh=True,
num_tets_table=self.num_tets_table, tet_table=self.tet_table, ori_v=v_deformed_nx3)
faces = torch.cat(
[faces[:, 0:1],
faces[:, 2:3],
faces[:, 1:2], ], dim=-1)
return verts, faces, tet_verts, tets
def render_mesh(self, mesh_v_nx3, mesh_f_fx3, camera_mv_bx4x4, resolution=256, hierarchical_mask=False):
return_value = dict()
if self.render_type == 'neural_render':
tex_pos, mask, hard_mask, rast, v_pos_clip, mask_pyramid, depth = self.renderer.render_mesh(
mesh_v_nx3.unsqueeze(dim=0),
mesh_f_fx3.int(),
camera_mv_bx4x4,
mesh_v_nx3.unsqueeze(dim=0),
resolution=resolution,
device=self.device,
hierarchical_mask=hierarchical_mask
)
return_value['tex_pos'] = tex_pos
return_value['mask'] = mask
return_value['hard_mask'] = hard_mask
return_value['rast'] = rast
return_value['v_pos_clip'] = v_pos_clip
return_value['mask_pyramid'] = mask_pyramid
return_value['depth'] = depth
else:
raise NotImplementedError
return return_value
def render(self, v_deformed_bxnx3=None, sdf_bxn=None, camera_mv_bxnviewx4x4=None, resolution=256):
# Here I assume a batch of meshes (can be different mesh and geometry), for the other shapes, the batch is 1
v_list = []
f_list = []
n_batch = v_deformed_bxnx3.shape[0]
all_render_output = []
for i_batch in range(n_batch):
verts_nx3, faces_fx3 = self.get_mesh(v_deformed_bxnx3[i_batch], sdf_bxn[i_batch])
v_list.append(verts_nx3)
f_list.append(faces_fx3)
render_output = self.render_mesh(verts_nx3, faces_fx3, camera_mv_bxnviewx4x4[i_batch], resolution)
all_render_output.append(render_output)
# Concatenate all render output
return_keys = all_render_output[0].keys()
return_value = dict()
for k in return_keys:
value = [v[k] for v in all_render_output]
return_value[k] = value
# We can do concatenation outside of the render
return return_value
|