Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,523 Bytes
ad06aed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Modified by Jiale Xu
# The modifications are subject to the same license as the original.
"""
The ray sampler is a module that takes in camera matrices and resolution and batches of rays.
Expects cam2world matrices that use the OpenCV camera coordinate system conventions.
"""
import torch
class RaySampler(torch.nn.Module):
def __init__(self):
super().__init__()
self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None
def forward(self, cam2world_matrix, intrinsics, render_size):
"""
Create batches of rays and return origins and directions.
cam2world_matrix: (N, 4, 4)
intrinsics: (N, 3, 3)
render_size: int
ray_origins: (N, M, 3)
ray_dirs: (N, M, 2)
"""
dtype = cam2world_matrix.dtype
device = cam2world_matrix.device
N, M = cam2world_matrix.shape[0], render_size**2
cam_locs_world = cam2world_matrix[:, :3, 3]
fx = intrinsics[:, 0, 0]
fy = intrinsics[:, 1, 1]
cx = intrinsics[:, 0, 2]
cy = intrinsics[:, 1, 2]
sk = intrinsics[:, 0, 1]
uv = torch.stack(torch.meshgrid(
torch.arange(render_size, dtype=dtype, device=device),
torch.arange(render_size, dtype=dtype, device=device),
indexing='ij',
))
uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)
x_cam = uv[:, :, 0].view(N, -1) * (1./render_size) + (0.5/render_size)
y_cam = uv[:, :, 1].view(N, -1) * (1./render_size) + (0.5/render_size)
z_cam = torch.ones((N, M), dtype=dtype, device=device)
x_lift = (x_cam - cx.unsqueeze(-1) + cy.unsqueeze(-1)*sk.unsqueeze(-1)/fy.unsqueeze(-1) - sk.unsqueeze(-1)*y_cam/fy.unsqueeze(-1)) / fx.unsqueeze(-1) * z_cam
y_lift = (y_cam - cy.unsqueeze(-1)) / fy.unsqueeze(-1) * z_cam
cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1).to(dtype)
_opencv2blender = torch.tensor([
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1],
], dtype=dtype, device=device).unsqueeze(0).repeat(N, 1, 1)
cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender)
world_rel_points = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3]
ray_dirs = world_rel_points - cam_locs_world[:, None, :]
ray_dirs = torch.nn.functional.normalize(ray_dirs, dim=2).to(dtype)
ray_origins = cam_locs_world.unsqueeze(1).repeat(1, ray_dirs.shape[1], 1)
return ray_origins, ray_dirs
class OrthoRaySampler(torch.nn.Module):
def __init__(self):
super().__init__()
self.ray_origins_h, self.ray_directions, self.depths, self.image_coords, self.rendering_options = None, None, None, None, None
def forward(self, cam2world_matrix, ortho_scale, render_size):
"""
Create batches of rays and return origins and directions.
cam2world_matrix: (N, 4, 4)
ortho_scale: float
render_size: int
ray_origins: (N, M, 3)
ray_dirs: (N, M, 3)
"""
N, M = cam2world_matrix.shape[0], render_size**2
uv = torch.stack(torch.meshgrid(
torch.arange(render_size, dtype=torch.float32, device=cam2world_matrix.device),
torch.arange(render_size, dtype=torch.float32, device=cam2world_matrix.device),
indexing='ij',
))
uv = uv.flip(0).reshape(2, -1).transpose(1, 0)
uv = uv.unsqueeze(0).repeat(cam2world_matrix.shape[0], 1, 1)
x_cam = uv[:, :, 0].view(N, -1) * (1./render_size) + (0.5/render_size)
y_cam = uv[:, :, 1].view(N, -1) * (1./render_size) + (0.5/render_size)
z_cam = torch.zeros((N, M), device=cam2world_matrix.device)
x_lift = (x_cam - 0.5) * ortho_scale
y_lift = (y_cam - 0.5) * ortho_scale
cam_rel_points = torch.stack((x_lift, y_lift, z_cam, torch.ones_like(z_cam)), dim=-1)
_opencv2blender = torch.tensor([
[1, 0, 0, 0],
[0, -1, 0, 0],
[0, 0, -1, 0],
[0, 0, 0, 1],
], dtype=torch.float32, device=cam2world_matrix.device).unsqueeze(0).repeat(N, 1, 1)
cam2world_matrix = torch.bmm(cam2world_matrix, _opencv2blender)
ray_origins = torch.bmm(cam2world_matrix, cam_rel_points.permute(0, 2, 1)).permute(0, 2, 1)[:, :, :3]
ray_dirs_cam = torch.stack([
torch.zeros((N, M), device=cam2world_matrix.device),
torch.zeros((N, M), device=cam2world_matrix.device),
torch.ones((N, M), device=cam2world_matrix.device),
], dim=-1)
ray_dirs = torch.bmm(cam2world_matrix[:, :3, :3], ray_dirs_cam.permute(0, 2, 1)).permute(0, 2, 1)
return ray_origins, ray_dirs
|