Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import numpy as np | |
import torch | |
import torch.nn.functional as F | |
from torchvision.transforms import v2 | |
from torchvision.utils import make_grid, save_image | |
from torchmetrics.image.lpip import LearnedPerceptualImagePatchSimilarity | |
import pytorch_lightning as pl | |
from einops import rearrange, repeat | |
from src.utils.train_util import instantiate_from_config | |
# Regulrarization loss for FlexiCubes | |
def sdf_reg_loss_batch(sdf, all_edges): | |
sdf_f1x6x2 = sdf[:, all_edges.reshape(-1)].reshape(sdf.shape[0], -1, 2) | |
mask = torch.sign(sdf_f1x6x2[..., 0]) != torch.sign(sdf_f1x6x2[..., 1]) | |
sdf_f1x6x2 = sdf_f1x6x2[mask] | |
sdf_diff = F.binary_cross_entropy_with_logits( | |
sdf_f1x6x2[..., 0], (sdf_f1x6x2[..., 1] > 0).float()) + \ | |
F.binary_cross_entropy_with_logits( | |
sdf_f1x6x2[..., 1], (sdf_f1x6x2[..., 0] > 0).float()) | |
return sdf_diff | |
class MVRecon(pl.LightningModule): | |
def __init__( | |
self, | |
lrm_generator_config, | |
input_size=256, | |
render_size=512, | |
init_ckpt=None, | |
): | |
super(MVRecon, self).__init__() | |
self.input_size = input_size | |
self.render_size = render_size | |
# init modules | |
self.lrm_generator = instantiate_from_config(lrm_generator_config) | |
self.lpips = LearnedPerceptualImagePatchSimilarity(net_type='vgg') | |
# Load weights from pretrained MVRecon model, and use the mlp | |
# weights to initialize the weights of sdf and rgb mlps. | |
if init_ckpt is not None: | |
sd = torch.load(init_ckpt, map_location='cpu')['state_dict'] | |
sd = {k: v for k, v in sd.items() if k.startswith('lrm_generator')} | |
sd_fc = {} | |
for k, v in sd.items(): | |
if k.startswith('lrm_generator.synthesizer.decoder.net.'): | |
if k.startswith('lrm_generator.synthesizer.decoder.net.6.'): # last layer | |
# Here we assume the density filed's isosurface threshold is t, | |
# we reverse the sign of density filed to initialize SDF field. | |
# -(w*x + b - t) = (-w)*x + (t - b) | |
if 'weight' in k: | |
sd_fc[k.replace('net.', 'net_sdf.')] = -v[0:1] | |
else: | |
sd_fc[k.replace('net.', 'net_sdf.')] = 3.0 - v[0:1] | |
sd_fc[k.replace('net.', 'net_rgb.')] = v[1:4] | |
else: | |
sd_fc[k.replace('net.', 'net_sdf.')] = v | |
sd_fc[k.replace('net.', 'net_rgb.')] = v | |
else: | |
sd_fc[k] = v | |
sd_fc = {k.replace('lrm_generator.', ''): v for k, v in sd_fc.items()} | |
# missing `net_deformation` and `net_weight` parameters | |
self.lrm_generator.load_state_dict(sd_fc, strict=False) | |
print(f'Loaded weights from {init_ckpt}') | |
self.validation_step_outputs = [] | |
def on_fit_start(self): | |
device = torch.device(f'cuda:{self.global_rank}') | |
self.lrm_generator.init_flexicubes_geometry(device) | |
if self.global_rank == 0: | |
os.makedirs(os.path.join(self.logdir, 'images'), exist_ok=True) | |
os.makedirs(os.path.join(self.logdir, 'images_val'), exist_ok=True) | |
def prepare_batch_data(self, batch): | |
lrm_generator_input = {} | |
render_gt = {} | |
# input images | |
images = batch['input_images'] | |
images = v2.functional.resize( | |
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) | |
lrm_generator_input['images'] = images.to(self.device) | |
# input cameras and render cameras | |
input_c2ws = batch['input_c2ws'] | |
input_Ks = batch['input_Ks'] | |
target_c2ws = batch['target_c2ws'] | |
render_c2ws = torch.cat([input_c2ws, target_c2ws], dim=1) | |
render_w2cs = torch.linalg.inv(render_c2ws) | |
input_extrinsics = input_c2ws.flatten(-2) | |
input_extrinsics = input_extrinsics[:, :, :12] | |
input_intrinsics = input_Ks.flatten(-2) | |
input_intrinsics = torch.stack([ | |
input_intrinsics[:, :, 0], input_intrinsics[:, :, 4], | |
input_intrinsics[:, :, 2], input_intrinsics[:, :, 5], | |
], dim=-1) | |
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) | |
# add noise to input_cameras | |
cameras = cameras + torch.rand_like(cameras) * 0.04 - 0.02 | |
lrm_generator_input['cameras'] = cameras.to(self.device) | |
lrm_generator_input['render_cameras'] = render_w2cs.to(self.device) | |
# target images | |
target_images = torch.cat([batch['input_images'], batch['target_images']], dim=1) | |
target_depths = torch.cat([batch['input_depths'], batch['target_depths']], dim=1) | |
target_alphas = torch.cat([batch['input_alphas'], batch['target_alphas']], dim=1) | |
target_normals = torch.cat([batch['input_normals'], batch['target_normals']], dim=1) | |
render_size = self.render_size | |
target_images = v2.functional.resize( | |
target_images, render_size, interpolation=3, antialias=True).clamp(0, 1) | |
target_depths = v2.functional.resize( | |
target_depths, render_size, interpolation=0, antialias=True) | |
target_alphas = v2.functional.resize( | |
target_alphas, render_size, interpolation=0, antialias=True) | |
target_normals = v2.functional.resize( | |
target_normals, render_size, interpolation=3, antialias=True) | |
lrm_generator_input['render_size'] = render_size | |
render_gt['target_images'] = target_images.to(self.device) | |
render_gt['target_depths'] = target_depths.to(self.device) | |
render_gt['target_alphas'] = target_alphas.to(self.device) | |
render_gt['target_normals'] = target_normals.to(self.device) | |
return lrm_generator_input, render_gt | |
def prepare_validation_batch_data(self, batch): | |
lrm_generator_input = {} | |
# input images | |
images = batch['input_images'] | |
images = v2.functional.resize( | |
images, self.input_size, interpolation=3, antialias=True).clamp(0, 1) | |
lrm_generator_input['images'] = images.to(self.device) | |
# input cameras | |
input_c2ws = batch['input_c2ws'].flatten(-2) | |
input_Ks = batch['input_Ks'].flatten(-2) | |
input_extrinsics = input_c2ws[:, :, :12] | |
input_intrinsics = torch.stack([ | |
input_Ks[:, :, 0], input_Ks[:, :, 4], | |
input_Ks[:, :, 2], input_Ks[:, :, 5], | |
], dim=-1) | |
cameras = torch.cat([input_extrinsics, input_intrinsics], dim=-1) | |
lrm_generator_input['cameras'] = cameras.to(self.device) | |
# render cameras | |
render_c2ws = batch['render_c2ws'] | |
render_w2cs = torch.linalg.inv(render_c2ws) | |
lrm_generator_input['render_cameras'] = render_w2cs.to(self.device) | |
lrm_generator_input['render_size'] = 384 | |
return lrm_generator_input | |
def forward_lrm_generator(self, images, cameras, render_cameras, render_size=512): | |
planes = torch.utils.checkpoint.checkpoint( | |
self.lrm_generator.forward_planes, | |
images, | |
cameras, | |
use_reentrant=False, | |
) | |
out = self.lrm_generator.forward_geometry( | |
planes, | |
render_cameras, | |
render_size, | |
) | |
return out | |
def forward(self, lrm_generator_input): | |
images = lrm_generator_input['images'] | |
cameras = lrm_generator_input['cameras'] | |
render_cameras = lrm_generator_input['render_cameras'] | |
render_size = lrm_generator_input['render_size'] | |
out = self.forward_lrm_generator( | |
images, cameras, render_cameras, render_size=render_size) | |
return out | |
def training_step(self, batch, batch_idx): | |
lrm_generator_input, render_gt = self.prepare_batch_data(batch) | |
render_out = self.forward(lrm_generator_input) | |
loss, loss_dict = self.compute_loss(render_out, render_gt) | |
self.log_dict(loss_dict, prog_bar=True, logger=True, on_step=True, on_epoch=True) | |
if self.global_step % 1000 == 0 and self.global_rank == 0: | |
B, N, C, H, W = render_gt['target_images'].shape | |
N_in = lrm_generator_input['images'].shape[1] | |
target_images = rearrange( | |
render_gt['target_images'], 'b n c h w -> b c h (n w)') | |
render_images = rearrange( | |
render_out['img'], 'b n c h w -> b c h (n w)') | |
target_alphas = rearrange( | |
repeat(render_gt['target_alphas'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') | |
render_alphas = rearrange( | |
repeat(render_out['mask'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') | |
target_depths = rearrange( | |
repeat(render_gt['target_depths'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') | |
render_depths = rearrange( | |
repeat(render_out['depth'], 'b n 1 h w -> b n 3 h w'), 'b n c h w -> b c h (n w)') | |
target_normals = rearrange( | |
render_gt['target_normals'], 'b n c h w -> b c h (n w)') | |
render_normals = rearrange( | |
render_out['normal'], 'b n c h w -> b c h (n w)') | |
MAX_DEPTH = torch.max(target_depths) | |
target_depths = target_depths / MAX_DEPTH * target_alphas | |
render_depths = render_depths / MAX_DEPTH | |
grid = torch.cat([ | |
target_images, render_images, | |
target_alphas, render_alphas, | |
target_depths, render_depths, | |
target_normals, render_normals, | |
], dim=-2) | |
grid = make_grid(grid, nrow=target_images.shape[0], normalize=True, value_range=(0, 1)) | |
image_path = os.path.join(self.logdir, 'images', f'train_{self.global_step:07d}.png') | |
save_image(grid, image_path) | |
print(f"Saved image to {image_path}") | |
return loss | |
def compute_loss(self, render_out, render_gt): | |
# NOTE: the rgb value range of OpenLRM is [0, 1] | |
render_images = render_out['img'] | |
target_images = render_gt['target_images'].to(render_images) | |
render_images = rearrange(render_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 | |
target_images = rearrange(target_images, 'b n ... -> (b n) ...') * 2.0 - 1.0 | |
loss_mse = F.mse_loss(render_images, target_images) | |
loss_lpips = 2.0 * self.lpips(render_images, target_images) | |
render_alphas = render_out['mask'] | |
target_alphas = render_gt['target_alphas'] | |
loss_mask = F.mse_loss(render_alphas, target_alphas) | |
render_depths = render_out['depth'] | |
target_depths = render_gt['target_depths'] | |
loss_depth = 0.5 * F.l1_loss(render_depths[target_alphas>0], target_depths[target_alphas>0]) | |
render_normals = render_out['normal'] * 2.0 - 1.0 | |
target_normals = render_gt['target_normals'] * 2.0 - 1.0 | |
similarity = (render_normals * target_normals).sum(dim=-3).abs() | |
normal_mask = target_alphas.squeeze(-3) | |
loss_normal = 1 - similarity[normal_mask>0].mean() | |
loss_normal = 0.2 * loss_normal | |
# flexicubes regularization loss | |
sdf = render_out['sdf'] | |
sdf_reg_loss = render_out['sdf_reg_loss'] | |
sdf_reg_loss_entropy = sdf_reg_loss_batch(sdf, self.lrm_generator.geometry.all_edges).mean() * 0.01 | |
_, flexicubes_surface_reg, flexicubes_weights_reg = sdf_reg_loss | |
flexicubes_surface_reg = flexicubes_surface_reg.mean() * 0.5 | |
flexicubes_weights_reg = flexicubes_weights_reg.mean() * 0.1 | |
loss_reg = sdf_reg_loss_entropy + flexicubes_surface_reg + flexicubes_weights_reg | |
loss = loss_mse + loss_lpips + loss_mask + loss_normal + loss_reg | |
prefix = 'train' | |
loss_dict = {} | |
loss_dict.update({f'{prefix}/loss_mse': loss_mse}) | |
loss_dict.update({f'{prefix}/loss_lpips': loss_lpips}) | |
loss_dict.update({f'{prefix}/loss_mask': loss_mask}) | |
loss_dict.update({f'{prefix}/loss_normal': loss_normal}) | |
loss_dict.update({f'{prefix}/loss_depth': loss_depth}) | |
loss_dict.update({f'{prefix}/loss_reg_sdf': sdf_reg_loss_entropy}) | |
loss_dict.update({f'{prefix}/loss_reg_surface': flexicubes_surface_reg}) | |
loss_dict.update({f'{prefix}/loss_reg_weights': flexicubes_weights_reg}) | |
loss_dict.update({f'{prefix}/loss': loss}) | |
return loss, loss_dict | |
def validation_step(self, batch, batch_idx): | |
lrm_generator_input = self.prepare_validation_batch_data(batch) | |
render_out = self.forward(lrm_generator_input) | |
render_images = render_out['img'] | |
render_images = rearrange(render_images, 'b n c h w -> b c h (n w)') | |
self.validation_step_outputs.append(render_images) | |
def on_validation_epoch_end(self): | |
images = torch.cat(self.validation_step_outputs, dim=-1) | |
all_images = self.all_gather(images) | |
all_images = rearrange(all_images, 'r b c h w -> (r b) c h w') | |
if self.global_rank == 0: | |
image_path = os.path.join(self.logdir, 'images_val', f'val_{self.global_step:07d}.png') | |
grid = make_grid(all_images, nrow=1, normalize=True, value_range=(0, 1)) | |
save_image(grid, image_path) | |
print(f"Saved image to {image_path}") | |
self.validation_step_outputs.clear() | |
def configure_optimizers(self): | |
lr = self.learning_rate | |
optimizer = torch.optim.AdamW( | |
self.lrm_generator.parameters(), lr=lr, betas=(0.90, 0.95), weight_decay=0.01) | |
scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts(optimizer, 100000, eta_min=0) | |
return {'optimizer': optimizer, 'lr_scheduler': scheduler} |