Spaces:
Running
on
A10G
Running
on
A10G
File size: 33,355 Bytes
2890711 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
import argparse
import datetime
import glob
import inspect
import os
import sys
from inspect import Parameter
from typing import Union
import numpy as np
import pytorch_lightning as pl
import torch
import torchvision
import wandb
from matplotlib import pyplot as plt
from natsort import natsorted
from omegaconf import OmegaConf
from packaging import version
from PIL import Image
from pytorch_lightning import seed_everything
from pytorch_lightning.callbacks import Callback
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.utilities import rank_zero_only
from sgm.util import exists, instantiate_from_config, isheatmap
MULTINODE_HACKS = True
def default_trainer_args():
argspec = dict(inspect.signature(Trainer.__init__).parameters)
argspec.pop("self")
default_args = {
param: argspec[param].default
for param in argspec
if argspec[param] != Parameter.empty
}
return default_args
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError("Boolean value expected.")
parser = argparse.ArgumentParser(**parser_kwargs)
parser.add_argument(
"-n",
"--name",
type=str,
const=True,
default="",
nargs="?",
help="postfix for logdir",
)
parser.add_argument(
"--no_date",
type=str2bool,
nargs="?",
const=True,
default=False,
help="if True, skip date generation for logdir and only use naming via opt.base or opt.name (+ opt.postfix, optionally)",
)
parser.add_argument(
"-r",
"--resume",
type=str,
const=True,
default="",
nargs="?",
help="resume from logdir or checkpoint in logdir",
)
parser.add_argument(
"-b",
"--base",
nargs="*",
metavar="base_config.yaml",
help="paths to base configs. Loaded from left-to-right. "
"Parameters can be overwritten or added with command-line options of the form `--key value`.",
default=list(),
)
parser.add_argument(
"-t",
"--train",
type=str2bool,
const=True,
default=True,
nargs="?",
help="train",
)
parser.add_argument(
"--no-test",
type=str2bool,
const=True,
default=False,
nargs="?",
help="disable test",
)
parser.add_argument(
"-p", "--project", help="name of new or path to existing project"
)
parser.add_argument(
"-d",
"--debug",
type=str2bool,
nargs="?",
const=True,
default=False,
help="enable post-mortem debugging",
)
parser.add_argument(
"-s",
"--seed",
type=int,
default=23,
help="seed for seed_everything",
)
parser.add_argument(
"-f",
"--postfix",
type=str,
default="",
help="post-postfix for default name",
)
parser.add_argument(
"--projectname",
type=str,
default="stablediffusion",
)
parser.add_argument(
"-l",
"--logdir",
type=str,
default="logs",
help="directory for logging dat shit",
)
parser.add_argument(
"--scale_lr",
type=str2bool,
nargs="?",
const=True,
default=False,
help="scale base-lr by ngpu * batch_size * n_accumulate",
)
parser.add_argument(
"--legacy_naming",
type=str2bool,
nargs="?",
const=True,
default=False,
help="name run based on config file name if true, else by whole path",
)
parser.add_argument(
"--enable_tf32",
type=str2bool,
nargs="?",
const=True,
default=False,
help="enables the TensorFloat32 format both for matmuls and cuDNN for pytorch 1.12",
)
parser.add_argument(
"--startup",
type=str,
default=None,
help="Startuptime from distributed script",
)
parser.add_argument(
"--wandb",
type=str2bool,
nargs="?",
const=True,
default=False, # TODO: later default to True
help="log to wandb",
)
parser.add_argument(
"--no_base_name",
type=str2bool,
nargs="?",
const=True,
default=False, # TODO: later default to True
help="log to wandb",
)
if version.parse(torch.__version__) >= version.parse("2.0.0"):
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="single checkpoint file to resume from",
)
default_args = default_trainer_args()
for key in default_args:
parser.add_argument("--" + key, default=default_args[key])
return parser
def get_checkpoint_name(logdir):
ckpt = os.path.join(logdir, "checkpoints", "last**.ckpt")
ckpt = natsorted(glob.glob(ckpt))
print('available "last" checkpoints:')
print(ckpt)
if len(ckpt) > 1:
print("got most recent checkpoint")
ckpt = sorted(ckpt, key=lambda x: os.path.getmtime(x))[-1]
print(f"Most recent ckpt is {ckpt}")
with open(os.path.join(logdir, "most_recent_ckpt.txt"), "w") as f:
f.write(ckpt + "\n")
try:
version = int(ckpt.split("/")[-1].split("-v")[-1].split(".")[0])
except Exception as e:
print("version confusion but not bad")
print(e)
version = 1
# version = last_version + 1
else:
# in this case, we only have one "last.ckpt"
ckpt = ckpt[0]
version = 1
melk_ckpt_name = f"last-v{version}.ckpt"
print(f"Current melk ckpt name: {melk_ckpt_name}")
return ckpt, melk_ckpt_name
class SetupCallback(Callback):
def __init__(
self,
resume,
now,
logdir,
ckptdir,
cfgdir,
config,
lightning_config,
debug,
ckpt_name=None,
):
super().__init__()
self.resume = resume
self.now = now
self.logdir = logdir
self.ckptdir = ckptdir
self.cfgdir = cfgdir
self.config = config
self.lightning_config = lightning_config
self.debug = debug
self.ckpt_name = ckpt_name
def on_exception(self, trainer: pl.Trainer, pl_module, exception):
if not self.debug and trainer.global_rank == 0:
print("Summoning checkpoint.")
if self.ckpt_name is None:
ckpt_path = os.path.join(self.ckptdir, "last.ckpt")
else:
ckpt_path = os.path.join(self.ckptdir, self.ckpt_name)
trainer.save_checkpoint(ckpt_path)
def on_fit_start(self, trainer, pl_module):
if trainer.global_rank == 0:
# Create logdirs and save configs
os.makedirs(self.logdir, exist_ok=True)
os.makedirs(self.ckptdir, exist_ok=True)
os.makedirs(self.cfgdir, exist_ok=True)
if "callbacks" in self.lightning_config:
if (
"metrics_over_trainsteps_checkpoint"
in self.lightning_config["callbacks"]
):
os.makedirs(
os.path.join(self.ckptdir, "trainstep_checkpoints"),
exist_ok=True,
)
print("Project config")
print(OmegaConf.to_yaml(self.config))
if MULTINODE_HACKS:
import time
time.sleep(5)
OmegaConf.save(
self.config,
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)),
)
print("Lightning config")
print(OmegaConf.to_yaml(self.lightning_config))
OmegaConf.save(
OmegaConf.create({"lightning": self.lightning_config}),
os.path.join(self.cfgdir, "{}-lightning.yaml".format(self.now)),
)
else:
# ModelCheckpoint callback created log directory --- remove it
if not MULTINODE_HACKS and not self.resume and os.path.exists(self.logdir):
dst, name = os.path.split(self.logdir)
dst = os.path.join(dst, "child_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
try:
os.rename(self.logdir, dst)
except FileNotFoundError:
pass
class ImageLogger(Callback):
def __init__(
self,
batch_frequency,
max_images,
clamp=True,
increase_log_steps=True,
rescale=True,
disabled=False,
log_on_batch_idx=False,
log_first_step=False,
log_images_kwargs=None,
log_before_first_step=False,
enable_autocast=True,
):
super().__init__()
self.enable_autocast = enable_autocast
self.rescale = rescale
self.batch_freq = batch_frequency
self.max_images = max_images
self.log_steps = [2**n for n in range(int(np.log2(self.batch_freq)) + 1)]
if not increase_log_steps:
self.log_steps = [self.batch_freq]
self.clamp = clamp
self.disabled = disabled
self.log_on_batch_idx = log_on_batch_idx
self.log_images_kwargs = log_images_kwargs if log_images_kwargs else {}
self.log_first_step = log_first_step
self.log_before_first_step = log_before_first_step
@rank_zero_only
def log_local(
self,
save_dir,
split,
images,
global_step,
current_epoch,
batch_idx,
pl_module: Union[None, pl.LightningModule] = None,
):
root = os.path.join(save_dir, "images", split)
for k in images:
if isheatmap(images[k]):
fig, ax = plt.subplots()
ax = ax.matshow(
images[k].cpu().numpy(), cmap="hot", interpolation="lanczos"
)
plt.colorbar(ax)
plt.axis("off")
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
k, global_step, current_epoch, batch_idx
)
os.makedirs(root, exist_ok=True)
path = os.path.join(root, filename)
plt.savefig(path)
plt.close()
# TODO: support wandb
else:
grid = torchvision.utils.make_grid(images[k], nrow=4)
if self.rescale:
grid = (grid + 1.0) / 2.0 # -1,1 -> 0,1; c,h,w
grid = grid.transpose(0, 1).transpose(1, 2).squeeze(-1)
grid = grid.numpy()
grid = (grid * 255).astype(np.uint8)
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
k, global_step, current_epoch, batch_idx
)
path = os.path.join(root, filename)
os.makedirs(os.path.split(path)[0], exist_ok=True)
img = Image.fromarray(grid)
img.save(path)
if exists(pl_module):
assert isinstance(
pl_module.logger, WandbLogger
), "logger_log_image only supports WandbLogger currently"
pl_module.logger.log_image(
key=f"{split}/{k}",
images=[
img,
],
step=pl_module.global_step,
)
@rank_zero_only
def log_img(self, pl_module, batch, batch_idx, split="train"):
check_idx = batch_idx if self.log_on_batch_idx else pl_module.global_step
if (
self.check_frequency(check_idx)
and hasattr(pl_module, "log_images") # batch_idx % self.batch_freq == 0
and callable(pl_module.log_images)
and
# batch_idx > 5 and
self.max_images > 0
):
logger = type(pl_module.logger)
is_train = pl_module.training
if is_train:
pl_module.eval()
gpu_autocast_kwargs = {
"enabled": self.enable_autocast, # torch.is_autocast_enabled(),
"dtype": torch.get_autocast_gpu_dtype(),
"cache_enabled": torch.is_autocast_cache_enabled(),
}
with torch.no_grad(), torch.cuda.amp.autocast(**gpu_autocast_kwargs):
images = pl_module.log_images(
batch, split=split, **self.log_images_kwargs
)
for k in images:
N = min(images[k].shape[0], self.max_images)
if not isheatmap(images[k]):
images[k] = images[k][:N]
if isinstance(images[k], torch.Tensor):
images[k] = images[k].detach().float().cpu()
if self.clamp and not isheatmap(images[k]):
images[k] = torch.clamp(images[k], -1.0, 1.0)
self.log_local(
pl_module.logger.save_dir,
split,
images,
pl_module.global_step,
pl_module.current_epoch,
batch_idx,
pl_module=pl_module
if isinstance(pl_module.logger, WandbLogger)
else None,
)
if is_train:
pl_module.train()
def check_frequency(self, check_idx):
if ((check_idx % self.batch_freq) == 0 or (check_idx in self.log_steps)) and (
check_idx > 0 or self.log_first_step
):
try:
self.log_steps.pop(0)
except IndexError as e:
print(e)
pass
return True
return False
@rank_zero_only
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if not self.disabled and (pl_module.global_step > 0 or self.log_first_step):
self.log_img(pl_module, batch, batch_idx, split="train")
@rank_zero_only
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx):
if self.log_before_first_step and pl_module.global_step == 0:
print(f"{self.__class__.__name__}: logging before training")
self.log_img(pl_module, batch, batch_idx, split="train")
@rank_zero_only
def on_validation_batch_end(
self, trainer, pl_module, outputs, batch, batch_idx, *args, **kwargs
):
if not self.disabled and pl_module.global_step > 0:
self.log_img(pl_module, batch, batch_idx, split="val")
if hasattr(pl_module, "calibrate_grad_norm"):
if (
pl_module.calibrate_grad_norm and batch_idx % 25 == 0
) and batch_idx > 0:
self.log_gradients(trainer, pl_module, batch_idx=batch_idx)
@rank_zero_only
def init_wandb(save_dir, opt, config, group_name, name_str):
print(f"setting WANDB_DIR to {save_dir}")
os.makedirs(save_dir, exist_ok=True)
os.environ["WANDB_DIR"] = save_dir
if opt.debug:
wandb.init(project=opt.projectname, mode="offline", group=group_name)
else:
wandb.init(
project=opt.projectname,
config=config,
settings=wandb.Settings(code_dir="./sgm"),
group=group_name,
name=name_str,
)
if __name__ == "__main__":
# custom parser to specify config files, train, test and debug mode,
# postfix, resume.
# `--key value` arguments are interpreted as arguments to the trainer.
# `nested.key=value` arguments are interpreted as config parameters.
# configs are merged from left-to-right followed by command line parameters.
# model:
# base_learning_rate: float
# target: path to lightning module
# params:
# key: value
# data:
# target: main.DataModuleFromConfig
# params:
# batch_size: int
# wrap: bool
# train:
# target: path to train dataset
# params:
# key: value
# validation:
# target: path to validation dataset
# params:
# key: value
# test:
# target: path to test dataset
# params:
# key: value
# lightning: (optional, has sane defaults and can be specified on cmdline)
# trainer:
# additional arguments to trainer
# logger:
# logger to instantiate
# modelcheckpoint:
# modelcheckpoint to instantiate
# callbacks:
# callback1:
# target: importpath
# params:
# key: value
now = datetime.datetime.now().strftime("%Y-%m-%dT%H-%M-%S")
# add cwd for convenience and to make classes in this file available when
# running as `python main.py`
# (in particular `main.DataModuleFromConfig`)
sys.path.append(os.getcwd())
parser = get_parser()
opt, unknown = parser.parse_known_args()
if opt.name and opt.resume:
raise ValueError(
"-n/--name and -r/--resume cannot be specified both."
"If you want to resume training in a new log folder, "
"use -n/--name in combination with --resume_from_checkpoint"
)
melk_ckpt_name = None
name = None
if opt.resume:
if not os.path.exists(opt.resume):
raise ValueError("Cannot find {}".format(opt.resume))
if os.path.isfile(opt.resume):
paths = opt.resume.split("/")
# idx = len(paths)-paths[::-1].index("logs")+1
# logdir = "/".join(paths[:idx])
logdir = "/".join(paths[:-2])
ckpt = opt.resume
_, melk_ckpt_name = get_checkpoint_name(logdir)
else:
assert os.path.isdir(opt.resume), opt.resume
logdir = opt.resume.rstrip("/")
ckpt, melk_ckpt_name = get_checkpoint_name(logdir)
print("#" * 100)
print(f'Resuming from checkpoint "{ckpt}"')
print("#" * 100)
opt.resume_from_checkpoint = ckpt
base_configs = sorted(glob.glob(os.path.join(logdir, "configs/*.yaml")))
opt.base = base_configs + opt.base
_tmp = logdir.split("/")
nowname = _tmp[-1]
else:
if opt.name:
name = "_" + opt.name
elif opt.base:
if opt.no_base_name:
name = ""
else:
if opt.legacy_naming:
cfg_fname = os.path.split(opt.base[0])[-1]
cfg_name = os.path.splitext(cfg_fname)[0]
else:
assert "configs" in os.path.split(opt.base[0])[0], os.path.split(
opt.base[0]
)[0]
cfg_path = os.path.split(opt.base[0])[0].split(os.sep)[
os.path.split(opt.base[0])[0].split(os.sep).index("configs")
+ 1 :
] # cut away the first one (we assert all configs are in "configs")
cfg_name = os.path.splitext(os.path.split(opt.base[0])[-1])[0]
cfg_name = "-".join(cfg_path) + f"-{cfg_name}"
name = "_" + cfg_name
else:
name = ""
if not opt.no_date:
nowname = now + name + opt.postfix
else:
nowname = name + opt.postfix
if nowname.startswith("_"):
nowname = nowname[1:]
logdir = os.path.join(opt.logdir, nowname)
print(f"LOGDIR: {logdir}")
ckptdir = os.path.join(logdir, "checkpoints")
cfgdir = os.path.join(logdir, "configs")
seed_everything(opt.seed, workers=True)
# move before model init, in case a torch.compile(...) is called somewhere
if opt.enable_tf32:
# pt_version = version.parse(torch.__version__)
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
print(f"Enabling TF32 for PyTorch {torch.__version__}")
else:
print(f"Using default TF32 settings for PyTorch {torch.__version__}:")
print(
f"torch.backends.cuda.matmul.allow_tf32={torch.backends.cuda.matmul.allow_tf32}"
)
print(f"torch.backends.cudnn.allow_tf32={torch.backends.cudnn.allow_tf32}")
try:
# init and save configs
configs = [OmegaConf.load(cfg) for cfg in opt.base]
cli = OmegaConf.from_dotlist(unknown)
config = OmegaConf.merge(*configs, cli)
lightning_config = config.pop("lightning", OmegaConf.create())
# merge trainer cli with config
trainer_config = lightning_config.get("trainer", OmegaConf.create())
# default to gpu
trainer_config["accelerator"] = "gpu"
#
standard_args = default_trainer_args()
for k in standard_args:
if getattr(opt, k) != standard_args[k]:
trainer_config[k] = getattr(opt, k)
ckpt_resume_path = opt.resume_from_checkpoint
if not "devices" in trainer_config and trainer_config["accelerator"] != "gpu":
del trainer_config["accelerator"]
cpu = True
else:
gpuinfo = trainer_config["devices"]
print(f"Running on GPUs {gpuinfo}")
cpu = False
trainer_opt = argparse.Namespace(**trainer_config)
lightning_config.trainer = trainer_config
# model
model = instantiate_from_config(config.model)
# trainer and callbacks
trainer_kwargs = dict()
# default logger configs
default_logger_cfgs = {
"wandb": {
"target": "pytorch_lightning.loggers.WandbLogger",
"params": {
"name": nowname,
# "save_dir": logdir,
"offline": opt.debug,
"id": nowname,
"project": opt.projectname,
"log_model": False,
# "dir": logdir,
},
},
"csv": {
"target": "pytorch_lightning.loggers.CSVLogger",
"params": {
"name": "testtube", # hack for sbord fanatics
"save_dir": logdir,
},
},
}
default_logger_cfg = default_logger_cfgs["wandb" if opt.wandb else "csv"]
if opt.wandb:
# TODO change once leaving "swiffer" config directory
try:
group_name = nowname.split(now)[-1].split("-")[1]
except:
group_name = nowname
default_logger_cfg["params"]["group"] = group_name
init_wandb(
os.path.join(os.getcwd(), logdir),
opt=opt,
group_name=group_name,
config=config,
name_str=nowname,
)
if "logger" in lightning_config:
logger_cfg = lightning_config.logger
else:
logger_cfg = OmegaConf.create()
logger_cfg = OmegaConf.merge(default_logger_cfg, logger_cfg)
trainer_kwargs["logger"] = instantiate_from_config(logger_cfg)
# modelcheckpoint - use TrainResult/EvalResult(checkpoint_on=metric) to
# specify which metric is used to determine best models
default_modelckpt_cfg = {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": ckptdir,
"filename": "{epoch:06}",
"verbose": True,
"save_last": True,
},
}
if hasattr(model, "monitor"):
print(f"Monitoring {model.monitor} as checkpoint metric.")
default_modelckpt_cfg["params"]["monitor"] = model.monitor
default_modelckpt_cfg["params"]["save_top_k"] = 3
if "modelcheckpoint" in lightning_config:
modelckpt_cfg = lightning_config.modelcheckpoint
else:
modelckpt_cfg = OmegaConf.create()
modelckpt_cfg = OmegaConf.merge(default_modelckpt_cfg, modelckpt_cfg)
print(f"Merged modelckpt-cfg: \n{modelckpt_cfg}")
# https://pytorch-lightning.readthedocs.io/en/stable/extensions/strategy.html
# default to ddp if not further specified
default_strategy_config = {"target": "pytorch_lightning.strategies.DDPStrategy"}
if "strategy" in lightning_config:
strategy_cfg = lightning_config.strategy
else:
strategy_cfg = OmegaConf.create()
default_strategy_config["params"] = {
"find_unused_parameters": False,
# "static_graph": True,
# "ddp_comm_hook": default.fp16_compress_hook # TODO: experiment with this, also for DDPSharded
}
strategy_cfg = OmegaConf.merge(default_strategy_config, strategy_cfg)
print(
f"strategy config: \n ++++++++++++++ \n {strategy_cfg} \n ++++++++++++++ "
)
trainer_kwargs["strategy"] = instantiate_from_config(strategy_cfg)
# add callback which sets up log directory
default_callbacks_cfg = {
"setup_callback": {
"target": "main.SetupCallback",
"params": {
"resume": opt.resume,
"now": now,
"logdir": logdir,
"ckptdir": ckptdir,
"cfgdir": cfgdir,
"config": config,
"lightning_config": lightning_config,
"debug": opt.debug,
"ckpt_name": melk_ckpt_name,
},
},
"image_logger": {
"target": "main.ImageLogger",
"params": {"batch_frequency": 1000, "max_images": 4, "clamp": True},
},
"learning_rate_logger": {
"target": "pytorch_lightning.callbacks.LearningRateMonitor",
"params": {
"logging_interval": "step",
# "log_momentum": True
},
},
}
if version.parse(pl.__version__) >= version.parse("1.4.0"):
default_callbacks_cfg.update({"checkpoint_callback": modelckpt_cfg})
if "callbacks" in lightning_config:
callbacks_cfg = lightning_config.callbacks
else:
callbacks_cfg = OmegaConf.create()
if "metrics_over_trainsteps_checkpoint" in callbacks_cfg:
print(
"Caution: Saving checkpoints every n train steps without deleting. This might require some free space."
)
default_metrics_over_trainsteps_ckpt_dict = {
"metrics_over_trainsteps_checkpoint": {
"target": "pytorch_lightning.callbacks.ModelCheckpoint",
"params": {
"dirpath": os.path.join(ckptdir, "trainstep_checkpoints"),
"filename": "{epoch:06}-{step:09}",
"verbose": True,
"save_top_k": -1,
"every_n_train_steps": 10000,
"save_weights_only": True,
},
}
}
default_callbacks_cfg.update(default_metrics_over_trainsteps_ckpt_dict)
callbacks_cfg = OmegaConf.merge(default_callbacks_cfg, callbacks_cfg)
if "ignore_keys_callback" in callbacks_cfg and ckpt_resume_path is not None:
callbacks_cfg.ignore_keys_callback.params["ckpt_path"] = ckpt_resume_path
elif "ignore_keys_callback" in callbacks_cfg:
del callbacks_cfg["ignore_keys_callback"]
trainer_kwargs["callbacks"] = [
instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg
]
if not "plugins" in trainer_kwargs:
trainer_kwargs["plugins"] = list()
# cmd line trainer args (which are in trainer_opt) have always priority over config-trainer-args (which are in trainer_kwargs)
trainer_opt = vars(trainer_opt)
trainer_kwargs = {
key: val for key, val in trainer_kwargs.items() if key not in trainer_opt
}
trainer = Trainer(**trainer_opt, **trainer_kwargs)
trainer.logdir = logdir ###
# data
data = instantiate_from_config(config.data)
# NOTE according to https://pytorch-lightning.readthedocs.io/en/latest/datamodules.html
# calling these ourselves should not be necessary but it is.
# lightning still takes care of proper multiprocessing though
data.prepare_data()
# data.setup()
print("#### Data #####")
try:
for k in data.datasets:
print(
f"{k}, {data.datasets[k].__class__.__name__}, {len(data.datasets[k])}"
)
except:
print("datasets not yet initialized.")
# configure learning rate
if "batch_size" in config.data.params:
bs, base_lr = config.data.params.batch_size, config.model.base_learning_rate
else:
bs, base_lr = (
config.data.params.train.loader.batch_size,
config.model.base_learning_rate,
)
if not cpu:
ngpu = len(lightning_config.trainer.devices.strip(",").split(","))
else:
ngpu = 1
if "accumulate_grad_batches" in lightning_config.trainer:
accumulate_grad_batches = lightning_config.trainer.accumulate_grad_batches
else:
accumulate_grad_batches = 1
print(f"accumulate_grad_batches = {accumulate_grad_batches}")
lightning_config.trainer.accumulate_grad_batches = accumulate_grad_batches
if opt.scale_lr:
model.learning_rate = accumulate_grad_batches * ngpu * bs * base_lr
print(
"Setting learning rate to {:.2e} = {} (accumulate_grad_batches) * {} (num_gpus) * {} (batchsize) * {:.2e} (base_lr)".format(
model.learning_rate, accumulate_grad_batches, ngpu, bs, base_lr
)
)
else:
model.learning_rate = base_lr
print("++++ NOT USING LR SCALING ++++")
print(f"Setting learning rate to {model.learning_rate:.2e}")
# allow checkpointing via USR1
def melk(*args, **kwargs):
# run all checkpoint hooks
if trainer.global_rank == 0:
print("Summoning checkpoint.")
if melk_ckpt_name is None:
ckpt_path = os.path.join(ckptdir, "last.ckpt")
else:
ckpt_path = os.path.join(ckptdir, melk_ckpt_name)
trainer.save_checkpoint(ckpt_path)
def divein(*args, **kwargs):
if trainer.global_rank == 0:
import pudb
pudb.set_trace()
import signal
signal.signal(signal.SIGUSR1, melk)
signal.signal(signal.SIGUSR2, divein)
# run
if opt.train:
try:
trainer.fit(model, data, ckpt_path=ckpt_resume_path)
except Exception:
if not opt.debug:
melk()
raise
if not opt.no_test and not trainer.interrupted:
trainer.test(model, data)
except RuntimeError as err:
if MULTINODE_HACKS:
import datetime
import os
import socket
import requests
device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
hostname = socket.gethostname()
ts = datetime.datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
resp = requests.get("http://169.254.169.254/latest/meta-data/instance-id")
print(
f"ERROR at {ts} on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}",
flush=True,
)
raise err
except Exception:
if opt.debug and trainer.global_rank == 0:
try:
import pudb as debugger
except ImportError:
import pdb as debugger
debugger.post_mortem()
raise
finally:
# move newly created debug project to debug_runs
if opt.debug and not opt.resume and trainer.global_rank == 0:
dst, name = os.path.split(logdir)
dst = os.path.join(dst, "debug_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
os.rename(logdir, dst)
if opt.wandb:
wandb.finish()
# if trainer.global_rank == 0:
# print(trainer.profiler.summary())
|