Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
from sgm.models.diffusion import DiffusionEngine | |
from sgm.motionctrl.modified_svd import ( | |
_forward_VideoTransformerBlock_attan2, | |
forward_SpatialVideoTransformer, | |
forward_VideoTransformerBlock, | |
forward_VideoUnet) | |
class CameraMotionControl(DiffusionEngine): | |
def __init__(self, | |
pose_embedding_dim = 1, | |
pose_dim = 12, | |
*args, **kwargs): | |
if 'ckpt_path' in kwargs: | |
ckpt_path = kwargs.pop('ckpt_path') | |
else: | |
ckpt_path = None | |
self.use_checkpoint = kwargs['network_config']['params']['use_checkpoint'] | |
super().__init__(*args, **kwargs) | |
bound_method = forward_VideoUnet.__get__( | |
self.model.diffusion_model, | |
self.model.diffusion_model.__class__) | |
setattr(self.model.diffusion_model, 'forward', bound_method) | |
self.train_module_names = [] | |
for _name, _module in self.model.diffusion_model.named_modules(): | |
if _module.__class__.__name__ == 'VideoTransformerBlock': | |
bound_method = forward_VideoTransformerBlock.__get__( | |
_module, _module.__class__) | |
setattr(_module, 'forward', bound_method) | |
bound_method = _forward_VideoTransformerBlock_attan2.__get__( | |
_module, _module.__class__) | |
setattr(_module, '_forward', bound_method) | |
cc_projection = nn.Linear(_module.attn2.to_q.in_features + pose_embedding_dim*pose_dim, _module.attn2.to_q.in_features) # 1024 | |
nn.init.eye_(list(cc_projection.parameters())[0][:_module.attn2.to_q.in_features, :_module.attn2.to_q.in_features]) | |
nn.init.zeros_(list(cc_projection.parameters())[1]) | |
cc_projection.requires_grad_(True) | |
_module.add_module('cc_projection', cc_projection) | |
self.train_module_names.append(f'{_name}.cc_projection') | |
self.train_module_names.append(f'{_name}.attn2') | |
self.train_module_names.append(f'{_name}.norm2') | |
if _module.__class__.__name__ == 'SpatialVideoTransformer': | |
bound_method = forward_SpatialVideoTransformer.__get__( | |
_module, _module.__class__) | |
setattr(_module, 'forward', bound_method) | |
if ckpt_path is not None: | |
self.init_from_ckpt(ckpt_path) |